This vignette is an example of an exploratory data analysis using
FishSET
. It utilizes a range of FishSET
functions for importing and upload data, performing quality
assessment/quality control, and summarizing and visualizing data.
library(FishSET)
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following object is masked from 'package:FishSET':
#>
#> select_vars
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
library(tidyr)
library(ggplot2)
library(maps)
The chunk below defines the location of the FishSET Folder. A
temporary directory is used in this vignette example; for actual use,
set the folderpath
to a location that is not temporary.
Upload the northeast scallop data that is included with the FishSET package.
load_maindata(dat = FishSET::scallop, project = proj)
#> Table saved to database
#>
#> ! Data saved to database as scallopMainDataTable20250116 (raw) and scallopMainDataTable (working).
#> Table is also in the working environment. !
The northeast scallop dataset is an obscured version of trip-level data from the scallop fishery from 2008-2015. We have retained 10,000 observations from the Limited Access Fishery that were landed at “large” ports. We have added random noise to the point locations, landings, and value. We have also replaced the TRIPID and PERMIT variables with identifiers that cannot be linked to originals.
Column Name | Type | Description |
---|---|---|
TRIPID | integer | An identifier variable for a trip (O) |
DATE_TRIP | Date | The date of landing (O) |
PERMIT.y | int | An identifier variable for a vessel. Rows with the same value indicate repeated observations of trips by the same vessel (O) |
TRIP_LENGTH | num | length of the trip, in days |
GEARCODE | chr | the type of gear used |
port_lat | num | latitude of the landing port, decimal degrees |
port_lon | num | longitude of the landing port, decimal degrees |
previous_port_lat | num | latitude of the previous landing port, decimal degrees |
previous_port_lon | num | longitude of the previous landing port, decimal degrees |
Plan Code | chr | =SES, indicating these trips are in the Scallop Fishery |
Program Code | chr | =SAA indicates a trip to a scallop access area; =SCA indicates a Limited Access DAYS-at-Sea Trip |
TRIP_COST_WINSOR_2020_DOL | num | Predicted trip costs,in 2020 dollars, winsorized to remove outliers |
DDLAT | num | latitude of fishing location, decimal degrees (O) |
DDLON | num | longitude of fishing location, decimal degrees (O) |
ZoneID | num | Fishing zone ID that corresponds to the TEN_ID variable of the tenMNSQR spatial table |
LANDED_OBSCURED | num | Landed meat weights of scallops, in pounds (O) |
DOLLAR_OBSCURED | num | Value of landed scallops, nominal dollars (O) |
DOLLAR_2020_OBSCURED | num | Value of landed scallops, 2020 dollars (O) |
DOLLAR_ALL_SP_2020_OBSCURED | num | Value of all species landed on a trip, 2020 dollars (O) |
(O) indicates the values in the columns have been obscured.
This data contains 10000 rows and 19 variables.
A commonly used grid in the Northeast United States is the 10 minute grid. Each grid cell is 10’ latitude by 10’ longitude. This may or may not be the appropriate grid for your research question.
Upload and view the ten minute squares map from the FishSET package.
load_spatial(spat = FishSET::tenMNSQR, project = proj, name = "TenMNSQR")
#> Writing layer `scallopTenMNSQRSpatTable' to data source
#> `/tmp/Rtmp0lMQPP/scallop/data/spat/scallopTenMNSQRSpatTable.geojson' using driver `GeoJSON'
#> Writing 5267 features with 9 fields and geometry type Polygon.
#> Writing layer `scallopTenMNSQRSpatTable20250116' to data source
#> `/tmp/Rtmp0lMQPP/scallop/data/spat/scallopTenMNSQRSpatTable20250116.geojson' using driver `GeoJSON'
#> Writing 5267 features with 9 fields and geometry type Polygon.
#> Spatial table saved to project folder as scallopTenMNSQRSpatTable
plot_spat(tenMNSQR)
We have included the locations of prospective Wind Lease areas in the Northeast United States as of early 2023. These are intended to illustrate FishSET capabilities.
Upload and view the WindClose areas from the FishSET package.
load_spatial(spat = FishSET::windLease, project = proj, name = "WindClose")
#> Writing layer `scallopWindCloseSpatTable' to data source
#> `/tmp/Rtmp0lMQPP/scallop/data/spat/scallopWindCloseSpatTable.geojson' using driver `GeoJSON'
#> Writing 32 features with 1 fields and geometry type Multi Polygon.
#> Writing layer `scallopWindCloseSpatTable20250116' to data source
#> `/tmp/Rtmp0lMQPP/scallop/data/spat/scallopWindCloseSpatTable20250116.geojson' using driver `GeoJSON'
#> Writing 32 features with 1 fields and geometry type Multi Polygon.
#> Spatial table saved to project folder as scallopWindCloseSpatTable
plot_spat(windLease)
Assign the the 10 minute squares cells
(scallopTenMNSQRSpatTable
) and Wind areas
(scallopWindCloseSpatTable
) to variables for the working
environment.
scallopTenMNSQRSpatTable <- table_view("scallopTenMNSQRSpatTable", proj)
#> Reading layer `scallopTenMNSQRSpatTable' from data source
#> `/tmp/Rtmp0lMQPP/scallop/data/spat/scallopTenMNSQRSpatTable.geojson'
#> using driver `GeoJSON'
#> Simple feature collection with 5267 features and 9 fields
#> Geometry type: POLYGON
#> Dimension: XY
#> Bounding box: xmin: -77 ymin: 33 xmax: -64 ymax: 46.00139
#> Geodetic CRS: NAD83
scallopWindCloseSpatTable <- table_view("scallopWindCloseSpatTable", proj)
#> Reading layer `scallopWindCloseSpatTable' from data source
#> `/tmp/Rtmp0lMQPP/scallop/data/spat/scallopWindCloseSpatTable.geojson'
#> using driver `GeoJSON'
#> Simple feature collection with 32 features and 1 field
#> Geometry type: MULTIPOLYGON
#> Dimension: XY
#> Bounding box: xmin: -75.90347 ymin: 36.14111 xmax: -70.02155 ymax: 41.71859
#> Geodetic CRS: WGS 84
FishSET can operate on distinct fleets. To do so, create a fleet table and use FishSET’s ``fleet_assign’’ function.
Assign all observations to either “Access Area” or “Days at Sea” fleets.
fleet_tab <-
data.frame(
condition = c('`Plan Code` == "SES" & `Program Code` == "SAA"',
'`Plan Code` == "SES" & `Program Code` == "SCA"'),
fleet = c("Access Area", "Days at Sea"))
# save fleet table to FishSET DB
fleet_table(scallopMainDataTable,
project = proj,
table = fleet_tab, save = TRUE)
#> Table saved to fishset_db database
#> condition fleet
#> 1 `Plan Code` == "SES" & `Program Code` == "SAA" Access Area
#> 2 `Plan Code` == "SES" & `Program Code` == "SCA" Days at Sea
# grab tab name
fleet_tab_name <- list_tables(proj, type = "fleet")
# create fleet column
scallopMainDataTable <-
fleet_assign(scallopMainDataTable, project = proj,
fleet_tab = fleet_tab_name)
The data contain several types of fishing gear. For simplicity, the
GEARCODE
column is re-binned to include three categories:
"DREDGE"
, "TRAWL-BOTTOM"
, and
"OTHER"
.
scallopMainDataTable$GEARCODE_OLD <- scallopMainDataTable$GEARCODE
#Anything with "DREDGE" in the GEARCODE will be rebinned to "DREDGE"
pat_match <- "*DREDGE*"
reg_pat <- glob2rx(pat_match)
scallopMainDataTable$GEARCODE[grep(reg_pat, scallopMainDataTable$GEARCODE)] <- 'DREDGE'
#Look at the GEARCODE NOW, there should be 'DREDGE', 'TRAWL-BOTTOM', and some funky stuff
table(scallopMainDataTable$GEARCODE)
#>
#> DREDGE OTHER TRAWL-BOTTOM
#> 9916 1 83
scallopMainDataTable$GEARCODE[!(scallopMainDataTable$GEARCODE %in% c('DREDGE','TRAWL-BOTTOM'))] <- 'OTHER'
Calculate operating profit of a trip by subtracting trip costs from revenues.
scallopMainDataTable <-
scallopMainDataTable %>%
mutate(OPERATING_PROFIT_2020 = DOLLAR_ALL_SP_2020_OBSCURED - TRIP_COST_WINSOR_2020_DOL)
FishSET can construct a table of summary statistics. To do so, use FishSET’s ``summary_stats’’ function.
TRIPID | PERMIT.y | TRIP_LENGTH | port_lat | port_lon | previous_port_lat | previous_port_lon | TRIP_COST_WINSOR_2020_DOL | DDLAT | DDLON | ZoneID | LANDED_OBSCURED | DOLLAR_OBSCURED | DOLLAR_2020_OBSCURED | DOLLAR_ALL_SP_2020_OBSCURED | fleetAssignPlaceholder | OPERATING_PROFIT_2020 | DATE_TRIP | GEARCODE | Plan Code | Program Code | fleet | GEARCODE_OLD |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min. : 6 | Min. : 1 | Min. : 0.15 | Min. :37 | Min. :-76 | Min. :35 | Min. :-77 | Min. : 484 | Min. :35 | Min. :-76 | Min. : 0 | Min. : 22 | Min. : 174 | Min. : 204 | Min. : 204 | Min. :1 | Min. : -12390 | First: 2007-05-01 | First: DREDGE | First: SES | First: SCA | First: Days at Sea | First: DREDGE-SCALLOP |
Median :18836 | Median :218 | Median : 7.17 | Median :42 | Median :-71 | Median :42 | Median :-71 | Median :12668 | Median :40 | Median :-73 | Median :406712 | Median :15639 | Median :130938 | Median :146722 | Median : 148013 | Median :1 | Median : 134354 | NA | NA | NA | NA | NA | NA |
Mean :19076 | Mean :236 | Mean : 7.47 | Mean :40 | Mean :-73 | Mean :40 | Mean :-73 | Mean :13886 | Mean :40 | Mean :-72 | Mean :400562 | Mean :14822 | Mean :137458 | Mean :151992 | Mean : 156171 | Mean :1 | Mean : 142285 | NA | NA | NA | NA | NA | NA |
Max. :38503 | Max. :456 | Max. :24.58 | Max. :42 | Max. :-71 | Max. :44 | Max. :-70 | Max. :30596 | Max. :43 | Max. :-66 | Max. :427066 | Max. :76507 | Max. :648601 | Max. :721698 | Max. :2412282 | Max. :1 | Max. :2396500 | NA | NA | NA | NA | NA | NA |
NA’s: 0 | NA’s: 0 | NA’s: 0 | NA’s: 0 | NA’s: 0 | NA’s: 18 | NA’s: 18 | NA’s: 0 | NA’s: 0 | NA’s: 0 | NA’s: 0 | NA’s: 0 | NA’s: 0 | NA’s: 0 | NA’s: 0 | NA’s: 0 | NA’s: 0 | NA’s: 0 | NA’s: 0 | NA’s: 0 | NA’s: 0 | NA’s: 0 | NA’s: 0 |
Unique Obs: 10000 | Unique Obs: 130 | Unique Obs: 3923 | Unique Obs: 6 | Unique Obs: 6 | Unique Obs: 41 | Unique Obs: 41 | Unique Obs: 9651 | Unique Obs: 2039 | Unique Obs: 2212 | Unique Obs: 465 | Unique Obs: 10000 | Unique Obs: 10000 | Unique Obs: 10000 | Unique Obs: 10000 | Unique Obs: 1 | Unique Obs: 10000 | Unique Obs: 3544 | Unique Obs: 3 | Unique Obs: 1 | Unique Obs: 2 | Unique Obs: 2 | Unique Obs: 4 |
No. 0’s: 0 | No. 0’s: 0 | No. 0’s: 0 | No. 0’s: 0 | No. 0’s: 0 | No. 0’s: NA | No. 0’s: NA | No. 0’s: 0 | No. 0’s: 0 | No. 0’s: 0 | No. 0’s: 1 | No. 0’s: 0 | No. 0’s: 0 | No. 0’s: 0 | No. 0’s: 0 | No. 0’s: 0 | No. 0’s: 0 | No. Empty: 0 | No. Empty: 0 | No. Empty: 0 | No. Empty: 0 | No. Empty: 0 | No. Empty: 0 |
FishSET can do Quality Assurance checks on your data for NA, NaN, duplicates, and formatting.
na_filter(scallopMainDataTable,
project = proj,
replace = FALSE, remove = FALSE,
rep.value = NA, over_write = FALSE)
#> The following columns contain NAs: previous_port_lat, previous_port_lon. Consider using na_filter to replace or remove NAs.
The na_filter()
shows that some columns have missing
values. By setting remove=TRUE,
these can be dropped,
although other methods of handling missing data may be better.
nan_filter(scallopMainDataTable,
project = proj,
replace = FALSE, remove = FALSE,
rep.value = NA, over_write = FALSE)
#> No NaNs found.
The nan_filter()
shows the data does not have any
NaNs
unique_filter(scallopMainDataTable, project = proj, remove = FALSE)
#> Unique filter check for scallopMainDataTable dataset on 20250116
#> Each row is a unique choice occurrence. No further action required.
The unique_filter()
shows that all rows are unique.
“Empty” variables contain only NA
s.
empty_vars_filter(scallopMainDataTable, project = proj, remove = FALSE)
#> Empty vars check for scallopMainDataTable dataset on 20250116
#> No empty variables identified.
The empty_vars_filter()
shows that none of the columns
are exclusively filled with NAs.
degree(scallopMainDataTable, project = proj,
lat = "DDLAT", lon = "DDLON",
latsign = NULL, lonsign = NULL,
replace = FALSE)
#> Latitude and longitude variables in decimal degrees. No further action required.
FishSET can perform some spatial QAQC. The object
scallopTenMNSQRSpatTable
defines areas of the ocean. The
spatial_qaqc
function is used to check for rows of data
that are on land (not in scallopTenMNSQRSpatTable
) and on
the boundary between cells.
spat_qaqc_out <- spatial_qaqc(dat = scallopMainDataTable,
project = proj,
spat = scallopTenMNSQRSpatTable,
lon.dat = "DDLON",
lat.dat = "DDLAT")
#> Warning: Spatial reference EPSG codes for the spatial and primary datasets do
#> not match. The detected projection in the spatial file will be used unless epsg
#> is specified.
#> Spherical geometry (s2) switched off
#> although coordinates are longitude/latitude, st_intersects assumes that they
#> are planar
#> although coordinates are longitude/latitude, st_intersects assumes that they
#> are planar
#> Warning: 10 observations (0.1%) occur on land.
#> although coordinates are longitude/latitude, st_intersects assumes that they
#> are planar
#> although coordinates are longitude/latitude, st_intersects assumes that they
#> are planar
#> Warning: 698 observations (7%) occur on boundary line between regulatory zones.
#> 10 observations (0.1%) occur on land.
#> 698 observations (7%) occur on boundary line between regulatory zones.
spat_qaqc_out$dataset <- NULL # drop dataset
spat_qaqc_out$spatial_summary %>%
pretty_lab(cols = "n") %>%
pretty_tab()
YEAR | n | EXPECTED_LOC | ON_LAND | ON_ZONE_BOUNDARY | perc |
---|---|---|---|---|---|
2007 | 773 | 728 | 2 | 43 | 7.73 |
2008 | 822 | 771 | 0 | 51 | 8.22 |
2009 | 861 | 820 | 1 | 40 | 8.61 |
2010 | 864 | 809 | 1 | 54 | 8.64 |
2011 | 818 | 761 | 0 | 57 | 8.18 |
2012 | 784 | 745 | 0 | 39 | 7.84 |
2013 | 603 | 562 | 1 | 40 | 6.03 |
2014 | 523 | 487 | 1 | 35 | 5.23 |
2015 | 601 | 551 | 0 | 50 | 6.01 |
2016 | 682 | 618 | 0 | 64 | 6.82 |
2017 | 788 | 727 | 0 | 61 | 7.88 |
2018 | 896 | 830 | 0 | 66 | 8.96 |
2019 | 985 | 883 | 4 | 98 | 9.85 |
#>
#> $boundary_plot
#>
#> $expected_plot
There are a few rows where the reported fishing location is on land.
There are also a few rows where the fishing location is exactly on the boundary between 10 minute squares. The regular spacing suggests that these points are located on vertices of cells (not the lines connecting the vertices). This is not particularly surprising. Each of the points on a vertex could reasonably be assigned to one of the four cells that share that vertex.
scallopMainDataTable <-
scallopMainDataTable %>%
mutate(DB_LANDING_YEAR = as.numeric(format(date_parser(DATE_TRIP), "%Y")))
Scaling catch data to ‘smaller’ numbers can often improve model fit and computing efficiency for discrete choice models.
FishSET can create Catch per Unit Effort variables.
Create CPUE
variable using TRIP_LENGTH
and
LANDED_OBSCURED
. Filter out any infinite values.
scallopMainDataTable <-
cpue(scallopMainDataTable, proj,
xWeight = "LANDED_OBSCURED",
xTime = "TRIP_LENGTH",
name = "CPUE")
#> Warning: xWeight must a measurement of mass. CPUE calculated.
#> Warning: xTime should be a measurement of time. Use the create_duration
#> function. CPUE calculated.
scallopMainDataTable <-
scallopMainDataTable %>%
filter(!is.infinite(CPUE))
Add a percent rank column to filter outliers.
Vector | outlier_check | N | mean | median | SD | min | max | NAs | skew |
---|---|---|---|---|---|---|---|---|---|
CPUE | None | 10,000 | 2.01 | 1.95 | 2 | 0.01 | 149.98 | 0 | 45.53 |
CPUE | 5_95_quant | 9,000 | 1.95 | 1.95 | 0.73 | 0.49 | 3.47 | 0 | 0.01 |
CPUE | 25_75_quant | 5,000 | 1.95 | 1.95 | 0.35 | 1.31 | 2.57 | 0 | -0.03 |
CPUE | mean_2SD | 9,973 | 1.96 | 1.95 | 0.9 | 0.01 | 5.79 | 0 | 0.23 |
CPUE | mean_3SD | 9,984 | 1.96 | 1.95 | 0.91 | 0.01 | 7.92 | 0 | 0.4 |
CPUE | median_2SD | 9,973 | 1.96 | 1.95 | 0.9 | 0.01 | 5.79 | 0 | 0.23 |
CPUE | median_3SD | 9,984 | 1.96 | 1.95 | 0.91 | 0.01 | 7.92 | 0 | 0.4 |
Similar to catch per unit effort, FishSET can create Value (or
Revenue) per Unit Effort. Here, we used revenue
(DOLLAR_OBSCURED
) instead of Landed
scallopMainDataTable <-
cpue(scallopMainDataTable, proj,
xWeight = "DOLLAR_OBSCURED",
xTime = "TRIP_LENGTH",
name = "VPUE")
#> Warning: xWeight must a measurement of mass. CPUE calculated.
#> Warning: xTime should be a measurement of time. Use the create_duration
#> function. CPUE calculated.
scallopMainDataTable <-
scallopMainDataTable %>%
filter(!is.infinite(VPUE))
Add a percent rank column to filter outliers.
Vector | outlier_check | N | mean | median | SD | min | max | NAs | skew |
---|---|---|---|---|---|---|---|---|---|
VPUE | None | 10,000 | 18,675.14 | 17,691.99 | 15,505.59 | 92.36 | 933,919.8 | 0 | 26.74 |
VPUE | 5_95_quant | 9,000 | 18,026.09 | 17,691.99 | 7,670.15 | 4,199.84 | 35,185.46 | 0 | 0.2 |
VPUE | 25_75_quant | 5,000 | 17,704.31 | 17,691.99 | 3,802.8 | 11,073.26 | 24,564.41 | 0 | 0.02 |
VPUE | mean_2SD | 9,947 | 18,203.17 | 17,639.59 | 9,281 | 92.36 | 49,607.4 | 0 | 0.39 |
VPUE | mean_3SD | 9,978 | 18,315.2 | 17,670.87 | 9,483.24 | 92.36 | 64,302.48 | 0 | 0.51 |
VPUE | median_2SD | 9,944 | 18,193.81 | 17,635.59 | 9,266.73 | 92.36 | 48,637.5 | 0 | 0.39 |
VPUE | median_3SD | 9,977 | 18,310.59 | 17,670.19 | 9,472.53 | 92.36 | 59,843.36 | 0 | 0.5 |
scallopMainDataTable %>%
count(fleet) %>%
mutate(perc = round(n/sum(n) * 100, 1)) %>%
pretty_lab(cols = "n") %>%
pretty_tab()
fleet | n | perc |
---|---|---|
Access Area | 5,678 | 56.8 |
Days at Sea | 4,322 | 43.2 |
Assign each observation to a ten minute square.
scallopMainDataTable <-
assignment_column(scallopMainDataTable, project = proj,
spat = scallopTenMNSQRSpatTable,
lon.dat = "DDLON",
lat.dat = "DDLAT",
cat = "TEN_ID",
name = "ZONE_ID",
closest.pt = FALSE,
hull.polygon = FALSE)
#> Warning: Projection does not match. The detected projection in the spatial file
#> will be used unless epsg is specified.
#> although coordinates are longitude/latitude, st_intersects assumes that they
#> are planar
#> although coordinates are longitude/latitude, st_intersects assumes that they
#> are planar
#> Warning: At least one observation assigned to multiple regulatory zones.
#> Assigning observations to nearest polygon.
#> although coordinates are longitude/latitude, st_nearest_feature assumes that
#> they are planar
Assign each observation to a closure area. An observation will have
an NA
if it does not occur within a closure area.
scallopMainDataTable <-
assignment_column(scallopMainDataTable, project = proj,
spat = scallopWindCloseSpatTable,
lon.dat = "DDLON",
lat.dat = "DDLAT",
cat = "NAME",
name = "closeID",
closest.pt = FALSE,
hull.polygon = FALSE)
#> although coordinates are longitude/latitude, st_intersects assumes that they
#> are planar
#> although coordinates are longitude/latitude, st_intersects assumes that they
#> are planar
scallopMainDataTable <-
scallopMainDataTable %>%
mutate(in_closure = !is.na(closeID))
62 observations (0.62%) occurred inside a closure area.
agg_helper(scallopMainDataTable,
value = "in_closure",
count = TRUE,
fun = NULL) %>%
pivot_wider(names_from = "in_closure", values_from = "n") %>%
rename("Outside Closure(s)" = "FALSE", "Inside Closure(s)" = "TRUE") %>%
pretty_lab() %>%
pretty_tab()
Outside Closure(s) | Inside Closure(s) |
---|---|
9,938 | 62 |
Observations inside/outside closures by fleet.
agg_helper(scallopMainDataTable, group = "fleet",
value = "in_closure", count = TRUE, fun = NULL) %>%
pivot_wider(names_from = "in_closure", values_from = "n") %>%
rename("Outside Closure(s)" = "FALSE", "Inside Closure(s)" = "TRUE") %>%
pretty_lab() %>%
pretty_tab()
fleet | Outside Closure(s) | Inside Closure(s) |
---|---|---|
Access Area | 5,668 | 10 |
Days at Sea | 4,270 | 52 |
Observations inside/outside closures by year.
agg_helper(scallopMainDataTable, value = "in_closure",
group = "DB_LANDING_YEAR",
count = TRUE, fun = NULL) %>%
pivot_wider(names_from = "in_closure", values_from = "n",
values_fill = 0) %>%
arrange(DB_LANDING_YEAR) %>%
rename("Outside closure(s)" = "FALSE", "Inside closure(s)" = "TRUE") %>%
pretty_lab(ignore = "DB_LANDING_YEAR") %>%
pretty_tab()
DB_LANDING_YEAR | Outside closure(s) | Inside closure(s) |
---|---|---|
2007 | 773 | 0 |
2008 | 814 | 8 |
2009 | 855 | 6 |
2010 | 855 | 9 |
2011 | 807 | 11 |
2012 | 780 | 4 |
2013 | 599 | 4 |
2014 | 521 | 2 |
2015 | 598 | 3 |
2016 | 677 | 5 |
2017 | 785 | 3 |
2018 | 894 | 2 |
2019 | 980 | 5 |
Observations inside/outside closures by year and fleet.
agg_helper(scallopMainDataTable, value = "in_closure",
group = c("DB_LANDING_YEAR", "fleet"),
count = TRUE, fun = NULL) %>%
pivot_wider(names_from = "in_closure", values_from = "n",
values_fill = 0) %>%
arrange(DB_LANDING_YEAR) %>%
rename("Outside closure(s)" = "FALSE", "Inside closure(s)" = "TRUE") %>%
pretty_lab(ignore = "DB_LANDING_YEAR") %>%
pretty_tab_sb(width = "60%")
DB_LANDING_YEAR | fleet | Outside closure(s) | Inside closure(s) |
---|---|---|---|
2007 | Access Area | 423 | 0 |
2007 | Days at Sea | 350 | 0 |
2008 | Access Area | 471 | 0 |
2008 | Days at Sea | 343 | 8 |
2009 | Access Area | 479 | 2 |
2009 | Days at Sea | 376 | 4 |
2010 | Access Area | 454 | 4 |
2010 | Days at Sea | 401 | 5 |
2011 | Access Area | 500 | 1 |
2011 | Days at Sea | 307 | 10 |
2012 | Access Area | 438 | 0 |
2012 | Days at Sea | 342 | 4 |
2013 | Days at Sea | 353 | 4 |
2013 | Access Area | 246 | 0 |
2014 | Days at Sea | 348 | 2 |
2014 | Access Area | 173 | 0 |
2015 | Access Area | 304 | 0 |
2015 | Days at Sea | 294 | 3 |
2016 | Access Area | 354 | 2 |
2016 | Days at Sea | 323 | 3 |
2017 | Access Area | 464 | 0 |
2017 | Days at Sea | 321 | 3 |
2018 | Access Area | 624 | 0 |
2018 | Days at Sea | 270 | 2 |
2019 | Access Area | 738 | 1 |
2019 | Days at Sea | 242 | 4 |
FishSET’s `zone_summary’ function can summarize the data by zone (Ten Minute Square) using interactive maps to make exploratory data analysis easier.
The number of observations by zone.
zone_out <- zone_summary(scallopMainDataTable, project = proj,
spat = scallopTenMNSQRSpatTable,
zone.dat = "ZONE_ID",
zone.spat = "TEN_ID",
output = "tab_plot",
count = TRUE,
breaks = NULL, n.breaks = 10,
na.rm = TRUE)
#> A line object has been specified, but lines is not in the mode
#> Adding lines to the mode...
zone_out$plot
ZONE_ID | n |
---|---|
416965 | 265 |
387332 | 260 |
387322 | 211 |
387331 | 209 |
387314 | 206 |
406926 | 202 |
406932 | 194 |
387436 | 168 |
387446 | 158 |
406915 | 151 |
387323 | 147 |
406925 | 140 |
406916 | 137 |
387445 | 135 |
416966 | 135 |
387313 | 129 |
416862 | 122 |
387455 | 119 |
387465 | 114 |
397364 | 111 |
416861 | 111 |
387333 | 109 |
387426 | 98 |
406933 | 97 |
397315 | 96 |
397213 | 91 |
397232 | 91 |
406811 | 84 |
387341 | 82 |
397355 | 80 |
397365 | 80 |
406936 | 80 |
416662 | 80 |
397231 | 78 |
416944 | 78 |
397363 | 77 |
406942 | 76 |
416852 | 75 |
397241 | 74 |
406935 | 74 |
387456 | 68 |
416955 | 67 |
387435 | 66 |
397325 | 63 |
406931 | 62 |
406944 | 61 |
387324 | 59 |
397346 | 59 |
426764 | 58 |
407364 | 57 |
387342 | 56 |
407242 | 56 |
416843 | 55 |
397356 | 54 |
406715 | 54 |
416661 | 54 |
377424 | 53 |
407262 | 53 |
377433 | 52 |
397354 | 52 |
407365 | 52 |
407263 | 51 |
416653 | 51 |
387312 | 49 |
387315 | 49 |
387321 | 47 |
397212 | 46 |
406714 | 46 |
406943 | 46 |
416851 | 45 |
397223 | 44 |
387425 | 43 |
397335 | 43 |
406713 | 41 |
406723 | 41 |
407254 | 41 |
406945 | 40 |
397214 | 39 |
407243 | 39 |
407355 | 39 |
397366 | 38 |
407356 | 38 |
407366 | 38 |
397314 | 37 |
407253 | 37 |
377423 | 36 |
397345 | 36 |
406821 | 36 |
397326 | 35 |
397362 | 35 |
406611 | 35 |
407241 | 35 |
397211 | 34 |
416714 | 34 |
377442 | 33 |
377443 | 33 |
397336 | 33 |
406716 | 33 |
406722 | 33 |
416853 | 33 |
407244 | 32 |
407261 | 32 |
416643 | 32 |
387311 | 31 |
407363 | 31 |
416842 | 31 |
377414 | 30 |
397344 | 30 |
407251 | 30 |
377415 | 29 |
397242 | 29 |
407112 | 29 |
407121 | 29 |
397316 | 28 |
416954 | 28 |
407113 | 27 |
407131 | 27 |
416652 | 27 |
387466 | 25 |
407252 | 25 |
416713 | 25 |
397353 | 24 |
407354 | 23 |
416945 | 23 |
406724 | 22 |
416642 | 22 |
416844 | 22 |
416933 | 22 |
406712 | 21 |
407245 | 21 |
416934 | 21 |
377432 | 20 |
397222 | 20 |
407226 | 20 |
407346 | 20 |
426763 | 20 |
387464 | 19 |
407345 | 19 |
416651 | 19 |
416863 | 19 |
397251 | 18 |
406812 | 18 |
406831 | 18 |
416765 | 18 |
397221 | 17 |
397324 | 17 |
397343 | 17 |
416654 | 17 |
416956 | 17 |
416964 | 17 |
406733 | 16 |
406832 | 16 |
416663 | 16 |
377413 | 15 |
397313 | 15 |
406822 | 15 |
377452 | 14 |
397334 | 14 |
407234 | 14 |
407264 | 14 |
377434 | 13 |
406826 | 13 |
416711 | 13 |
416932 | 13 |
377425 | 12 |
387325 | 12 |
387334 | 12 |
397352 | 12 |
397361 | 12 |
406732 | 12 |
416816 | 12 |
406841 | 11 |
406965 | 11 |
407111 | 11 |
407122 | 11 |
416766 | 11 |
387416 | 10 |
406833 | 10 |
407225 | 10 |
407246 | 10 |
427044 | 10 |
397333 | 9 |
406721 | 9 |
407115 | 9 |
407255 | 9 |
407256 | 9 |
417031 | 9 |
427045 | 9 |
387351 | 8 |
397342 | 8 |
417164 | 8 |
427065 | 8 |
397224 | 7 |
397312 | 7 |
406711 | 7 |
407114 | 7 |
407235 | 7 |
407353 | 7 |
416756 | 7 |
387463 | 6 |
406813 | 6 |
407236 | 6 |
416826 | 6 |
416834 | 6 |
416845 | 6 |
416943 | 6 |
377323 | 5 |
377422 | 5 |
387335 | 5 |
387336 | 5 |
387434 | 5 |
406814 | 5 |
406815 | 5 |
406924 | 5 |
406954 | 5 |
407232 | 5 |
407343 | 5 |
407362 | 5 |
416641 | 5 |
416712 | 5 |
416825 | 5 |
426765 | 5 |
427056 | 5 |
377444 | 4 |
387032 | 4 |
387362 | 4 |
387432 | 4 |
406835 | 4 |
406914 | 4 |
407132 | 4 |
407141 | 4 |
407352 | 4 |
416721 | 4 |
416854 | 4 |
417061 | 4 |
377416 | 3 |
377453 | 3 |
387242 | 3 |
387352 | 3 |
387411 | 3 |
387452 | 3 |
397351 | 3 |
397426 | 3 |
397465 | 3 |
406612 | 3 |
406725 | 3 |
406861 | 3 |
406934 | 3 |
406946 | 3 |
406952 | 3 |
407055 | 3 |
407151 | 3 |
407266 | 3 |
407344 | 3 |
417042 | 3 |
417062 | 3 |
427066 | 3 |
367322 | 2 |
367614 | 2 |
377325 | 2 |
377335 | 2 |
377435 | 2 |
377464 | 2 |
387241 | 2 |
387246 | 2 |
387316 | 2 |
387326 | 2 |
387354 | 2 |
387355 | 2 |
387363 | 2 |
387365 | 2 |
387414 | 2 |
387415 | 2 |
387422 | 2 |
387444 | 2 |
387454 | 2 |
387462 | 2 |
396916 | 2 |
397233 | 2 |
397234 | 2 |
397311 | 2 |
397322 | 2 |
397323 | 2 |
397332 | 2 |
397456 | 2 |
397466 | 2 |
406613 | 2 |
406621 | 2 |
406735 | 2 |
406742 | 2 |
406862 | 2 |
406941 | 2 |
406955 | 2 |
407013 | 2 |
407021 | 2 |
407032 | 2 |
407041 | 2 |
407142 | 2 |
407216 | 2 |
407221 | 2 |
407265 | 2 |
407316 | 2 |
407335 | 2 |
407336 | 2 |
407361 | 2 |
416722 | 2 |
416744 | 2 |
416755 | 2 |
416824 | 2 |
416833 | 2 |
416841 | 2 |
416864 | 2 |
416912 | 2 |
416922 | 2 |
416935 | 2 |
416953 | 2 |
416963 | 2 |
417055 | 2 |
417262 | 2 |
426762 | 2 |
0 | 1 |
347231 | 1 |
347336 | 1 |
347415 | 1 |
347535 | 1 |
357232 | 1 |
357313 | 1 |
357322 | 1 |
357325 | 1 |
357346 | 1 |
357445 | 1 |
357516 | 1 |
367216 | 1 |
367444 | 1 |
367536 | 1 |
377021 | 1 |
377143 | 1 |
377214 | 1 |
377224 | 1 |
377231 | 1 |
377311 | 1 |
377312 | 1 |
377321 | 1 |
377322 | 1 |
377332 | 1 |
377346 | 1 |
377364 | 1 |
377366 | 1 |
377411 | 1 |
377426 | 1 |
377445 | 1 |
377465 | 1 |
386916 | 1 |
387025 | 1 |
387121 | 1 |
387122 | 1 |
387145 | 1 |
387212 | 1 |
387214 | 1 |
387225 | 1 |
387226 | 1 |
387231 | 1 |
387232 | 1 |
387233 | 1 |
387236 | 1 |
387244 | 1 |
387252 | 1 |
387343 | 1 |
387344 | 1 |
387345 | 1 |
387353 | 1 |
387364 | 1 |
387366 | 1 |
387424 | 1 |
387433 | 1 |
387461 | 1 |
387655 | 1 |
396713 | 1 |
396814 | 1 |
397225 | 1 |
397246 | 1 |
397261 | 1 |
397262 | 1 |
397263 | 1 |
397265 | 1 |
397321 | 1 |
397331 | 1 |
397446 | 1 |
397463 | 1 |
397464 | 1 |
406623 | 1 |
406626 | 1 |
406643 | 1 |
406652 | 1 |
406731 | 1 |
406744 | 1 |
406764 | 1 |
406765 | 1 |
406766 | 1 |
406816 | 1 |
406834 | 1 |
406852 | 1 |
406923 | 1 |
406966 | 1 |
407011 | 1 |
407012 | 1 |
407015 | 1 |
407016 | 1 |
407035 | 1 |
407045 | 1 |
407116 | 1 |
407123 | 1 |
407133 | 1 |
407134 | 1 |
407135 | 1 |
407163 | 1 |
407215 | 1 |
407223 | 1 |
407224 | 1 |
407231 | 1 |
407233 | 1 |
407325 | 1 |
407326 | 1 |
407333 | 1 |
407342 | 1 |
407466 | 1 |
416644 | 1 |
416664 | 1 |
416665 | 1 |
416715 | 1 |
416724 | 1 |
416742 | 1 |
416743 | 1 |
416746 | 1 |
416762 | 1 |
416764 | 1 |
416835 | 1 |
416856 | 1 |
416865 | 1 |
416866 | 1 |
416915 | 1 |
416916 | 1 |
416924 | 1 |
416931 | 1 |
416942 | 1 |
416952 | 1 |
416961 | 1 |
416962 | 1 |
417046 | 1 |
417051 | 1 |
417145 | 1 |
417146 | 1 |
417154 | 1 |
417161 | 1 |
417162 | 1 |
417163 | 1 |
417165 | 1 |
417166 | 1 |
417366 | 1 |
426752 | 1 |
426915 | 1 |
426964 | 1 |
427034 | 1 |
427043 | 1 |
Percent of observations by zone can be produced by using
fun="percent"
.
zone_out <-
zone_summary(scallopMainDataTable,
project = proj,
spat = scallopTenMNSQRSpatTable,
zone.dat = "ZONE_ID",
zone.spat = "TEN_ID",
output = "tab_plot",
count = TRUE, fun = "percent",
breaks = c(seq(.2, .5, .1), seq(1, 2, .5)),
na.rm = TRUE)
#> A line object has been specified, but lines is not in the mode
#> Adding lines to the mode...
zone_out$plot
ZONE_ID | n | perc |
---|---|---|
416965 | 265 | 2.65 |
387332 | 260 | 2.6 |
387322 | 211 | 2.11 |
387331 | 209 | 2.09 |
387314 | 206 | 2.06 |
406926 | 202 | 2.02 |
406932 | 194 | 1.94 |
387436 | 168 | 1.68 |
387446 | 158 | 1.58 |
406915 | 151 | 1.51 |
387323 | 147 | 1.47 |
406925 | 140 | 1.4 |
406916 | 137 | 1.37 |
387445 | 135 | 1.35 |
416966 | 135 | 1.35 |
387313 | 129 | 1.29 |
416862 | 122 | 1.22 |
387455 | 119 | 1.19 |
387465 | 114 | 1.14 |
397364 | 111 | 1.11 |
416861 | 111 | 1.11 |
387333 | 109 | 1.09 |
387426 | 98 | 0.98 |
406933 | 97 | 0.97 |
397315 | 96 | 0.96 |
397213 | 91 | 0.91 |
397232 | 91 | 0.91 |
406811 | 84 | 0.84 |
387341 | 82 | 0.82 |
397355 | 80 | 0.8 |
397365 | 80 | 0.8 |
406936 | 80 | 0.8 |
416662 | 80 | 0.8 |
397231 | 78 | 0.78 |
416944 | 78 | 0.78 |
397363 | 77 | 0.77 |
406942 | 76 | 0.76 |
416852 | 75 | 0.75 |
397241 | 74 | 0.74 |
406935 | 74 | 0.74 |
387456 | 68 | 0.68 |
416955 | 67 | 0.67 |
387435 | 66 | 0.66 |
397325 | 63 | 0.63 |
406931 | 62 | 0.62 |
406944 | 61 | 0.61 |
387324 | 59 | 0.59 |
397346 | 59 | 0.59 |
426764 | 58 | 0.58 |
407364 | 57 | 0.57 |
387342 | 56 | 0.56 |
407242 | 56 | 0.56 |
416843 | 55 | 0.55 |
397356 | 54 | 0.54 |
406715 | 54 | 0.54 |
416661 | 54 | 0.54 |
377424 | 53 | 0.53 |
407262 | 53 | 0.53 |
377433 | 52 | 0.52 |
397354 | 52 | 0.52 |
407365 | 52 | 0.52 |
407263 | 51 | 0.51 |
416653 | 51 | 0.51 |
387312 | 49 | 0.49 |
387315 | 49 | 0.49 |
387321 | 47 | 0.47 |
397212 | 46 | 0.46 |
406714 | 46 | 0.46 |
406943 | 46 | 0.46 |
416851 | 45 | 0.45 |
397223 | 44 | 0.44 |
387425 | 43 | 0.43 |
397335 | 43 | 0.43 |
406713 | 41 | 0.41 |
406723 | 41 | 0.41 |
407254 | 41 | 0.41 |
406945 | 40 | 0.4 |
397214 | 39 | 0.39 |
407243 | 39 | 0.39 |
407355 | 39 | 0.39 |
397366 | 38 | 0.38 |
407356 | 38 | 0.38 |
407366 | 38 | 0.38 |
397314 | 37 | 0.37 |
407253 | 37 | 0.37 |
377423 | 36 | 0.36 |
397345 | 36 | 0.36 |
406821 | 36 | 0.36 |
397326 | 35 | 0.35 |
397362 | 35 | 0.35 |
406611 | 35 | 0.35 |
407241 | 35 | 0.35 |
397211 | 34 | 0.34 |
416714 | 34 | 0.34 |
377442 | 33 | 0.33 |
377443 | 33 | 0.33 |
397336 | 33 | 0.33 |
406716 | 33 | 0.33 |
406722 | 33 | 0.33 |
416853 | 33 | 0.33 |
407244 | 32 | 0.32 |
407261 | 32 | 0.32 |
416643 | 32 | 0.32 |
387311 | 31 | 0.31 |
407363 | 31 | 0.31 |
416842 | 31 | 0.31 |
377414 | 30 | 0.3 |
397344 | 30 | 0.3 |
407251 | 30 | 0.3 |
377415 | 29 | 0.29 |
397242 | 29 | 0.29 |
407112 | 29 | 0.29 |
407121 | 29 | 0.29 |
397316 | 28 | 0.28 |
416954 | 28 | 0.28 |
407113 | 27 | 0.27 |
407131 | 27 | 0.27 |
416652 | 27 | 0.27 |
387466 | 25 | 0.25 |
407252 | 25 | 0.25 |
416713 | 25 | 0.25 |
397353 | 24 | 0.24 |
407354 | 23 | 0.23 |
416945 | 23 | 0.23 |
406724 | 22 | 0.22 |
416642 | 22 | 0.22 |
416844 | 22 | 0.22 |
416933 | 22 | 0.22 |
406712 | 21 | 0.21 |
407245 | 21 | 0.21 |
416934 | 21 | 0.21 |
377432 | 20 | 0.2 |
397222 | 20 | 0.2 |
407226 | 20 | 0.2 |
407346 | 20 | 0.2 |
426763 | 20 | 0.2 |
387464 | 19 | 0.19 |
407345 | 19 | 0.19 |
416651 | 19 | 0.19 |
416863 | 19 | 0.19 |
397251 | 18 | 0.18 |
406812 | 18 | 0.18 |
406831 | 18 | 0.18 |
416765 | 18 | 0.18 |
397221 | 17 | 0.17 |
397324 | 17 | 0.17 |
397343 | 17 | 0.17 |
416654 | 17 | 0.17 |
416956 | 17 | 0.17 |
416964 | 17 | 0.17 |
406733 | 16 | 0.16 |
406832 | 16 | 0.16 |
416663 | 16 | 0.16 |
377413 | 15 | 0.15 |
397313 | 15 | 0.15 |
406822 | 15 | 0.15 |
377452 | 14 | 0.14 |
397334 | 14 | 0.14 |
407234 | 14 | 0.14 |
407264 | 14 | 0.14 |
377434 | 13 | 0.13 |
406826 | 13 | 0.13 |
416711 | 13 | 0.13 |
416932 | 13 | 0.13 |
377425 | 12 | 0.12 |
387325 | 12 | 0.12 |
387334 | 12 | 0.12 |
397352 | 12 | 0.12 |
397361 | 12 | 0.12 |
406732 | 12 | 0.12 |
416816 | 12 | 0.12 |
406841 | 11 | 0.11 |
406965 | 11 | 0.11 |
407111 | 11 | 0.11 |
407122 | 11 | 0.11 |
416766 | 11 | 0.11 |
387416 | 10 | 0.1 |
406833 | 10 | 0.1 |
407225 | 10 | 0.1 |
407246 | 10 | 0.1 |
427044 | 10 | 0.1 |
397333 | 9 | 0.09 |
406721 | 9 | 0.09 |
407115 | 9 | 0.09 |
407255 | 9 | 0.09 |
407256 | 9 | 0.09 |
417031 | 9 | 0.09 |
427045 | 9 | 0.09 |
387351 | 8 | 0.08 |
397342 | 8 | 0.08 |
417164 | 8 | 0.08 |
427065 | 8 | 0.08 |
397224 | 7 | 0.07 |
397312 | 7 | 0.07 |
406711 | 7 | 0.07 |
407114 | 7 | 0.07 |
407235 | 7 | 0.07 |
407353 | 7 | 0.07 |
416756 | 7 | 0.07 |
387463 | 6 | 0.06 |
406813 | 6 | 0.06 |
407236 | 6 | 0.06 |
416826 | 6 | 0.06 |
416834 | 6 | 0.06 |
416845 | 6 | 0.06 |
416943 | 6 | 0.06 |
377323 | 5 | 0.05 |
377422 | 5 | 0.05 |
387335 | 5 | 0.05 |
387336 | 5 | 0.05 |
387434 | 5 | 0.05 |
406814 | 5 | 0.05 |
406815 | 5 | 0.05 |
406924 | 5 | 0.05 |
406954 | 5 | 0.05 |
407232 | 5 | 0.05 |
407343 | 5 | 0.05 |
407362 | 5 | 0.05 |
416641 | 5 | 0.05 |
416712 | 5 | 0.05 |
416825 | 5 | 0.05 |
426765 | 5 | 0.05 |
427056 | 5 | 0.05 |
377444 | 4 | 0.04 |
387032 | 4 | 0.04 |
387362 | 4 | 0.04 |
387432 | 4 | 0.04 |
406835 | 4 | 0.04 |
406914 | 4 | 0.04 |
407132 | 4 | 0.04 |
407141 | 4 | 0.04 |
407352 | 4 | 0.04 |
416721 | 4 | 0.04 |
416854 | 4 | 0.04 |
417061 | 4 | 0.04 |
377416 | 3 | 0.03 |
377453 | 3 | 0.03 |
387242 | 3 | 0.03 |
387352 | 3 | 0.03 |
387411 | 3 | 0.03 |
387452 | 3 | 0.03 |
397351 | 3 | 0.03 |
397426 | 3 | 0.03 |
397465 | 3 | 0.03 |
406612 | 3 | 0.03 |
406725 | 3 | 0.03 |
406861 | 3 | 0.03 |
406934 | 3 | 0.03 |
406946 | 3 | 0.03 |
406952 | 3 | 0.03 |
407055 | 3 | 0.03 |
407151 | 3 | 0.03 |
407266 | 3 | 0.03 |
407344 | 3 | 0.03 |
417042 | 3 | 0.03 |
417062 | 3 | 0.03 |
427066 | 3 | 0.03 |
367322 | 2 | 0.02 |
367614 | 2 | 0.02 |
377325 | 2 | 0.02 |
377335 | 2 | 0.02 |
377435 | 2 | 0.02 |
377464 | 2 | 0.02 |
387241 | 2 | 0.02 |
387246 | 2 | 0.02 |
387316 | 2 | 0.02 |
387326 | 2 | 0.02 |
387354 | 2 | 0.02 |
387355 | 2 | 0.02 |
387363 | 2 | 0.02 |
387365 | 2 | 0.02 |
387414 | 2 | 0.02 |
387415 | 2 | 0.02 |
387422 | 2 | 0.02 |
387444 | 2 | 0.02 |
387454 | 2 | 0.02 |
387462 | 2 | 0.02 |
396916 | 2 | 0.02 |
397233 | 2 | 0.02 |
397234 | 2 | 0.02 |
397311 | 2 | 0.02 |
397322 | 2 | 0.02 |
397323 | 2 | 0.02 |
397332 | 2 | 0.02 |
397456 | 2 | 0.02 |
397466 | 2 | 0.02 |
406613 | 2 | 0.02 |
406621 | 2 | 0.02 |
406735 | 2 | 0.02 |
406742 | 2 | 0.02 |
406862 | 2 | 0.02 |
406941 | 2 | 0.02 |
406955 | 2 | 0.02 |
407013 | 2 | 0.02 |
407021 | 2 | 0.02 |
407032 | 2 | 0.02 |
407041 | 2 | 0.02 |
407142 | 2 | 0.02 |
407216 | 2 | 0.02 |
407221 | 2 | 0.02 |
407265 | 2 | 0.02 |
407316 | 2 | 0.02 |
407335 | 2 | 0.02 |
407336 | 2 | 0.02 |
407361 | 2 | 0.02 |
416722 | 2 | 0.02 |
416744 | 2 | 0.02 |
416755 | 2 | 0.02 |
416824 | 2 | 0.02 |
416833 | 2 | 0.02 |
416841 | 2 | 0.02 |
416864 | 2 | 0.02 |
416912 | 2 | 0.02 |
416922 | 2 | 0.02 |
416935 | 2 | 0.02 |
416953 | 2 | 0.02 |
416963 | 2 | 0.02 |
417055 | 2 | 0.02 |
417262 | 2 | 0.02 |
426762 | 2 | 0.02 |
0 | 1 | 0.01 |
347231 | 1 | 0.01 |
347336 | 1 | 0.01 |
347415 | 1 | 0.01 |
347535 | 1 | 0.01 |
357232 | 1 | 0.01 |
357313 | 1 | 0.01 |
357322 | 1 | 0.01 |
357325 | 1 | 0.01 |
357346 | 1 | 0.01 |
357445 | 1 | 0.01 |
357516 | 1 | 0.01 |
367216 | 1 | 0.01 |
367444 | 1 | 0.01 |
367536 | 1 | 0.01 |
377021 | 1 | 0.01 |
377143 | 1 | 0.01 |
377214 | 1 | 0.01 |
377224 | 1 | 0.01 |
377231 | 1 | 0.01 |
377311 | 1 | 0.01 |
377312 | 1 | 0.01 |
377321 | 1 | 0.01 |
377322 | 1 | 0.01 |
377332 | 1 | 0.01 |
377346 | 1 | 0.01 |
377364 | 1 | 0.01 |
377366 | 1 | 0.01 |
377411 | 1 | 0.01 |
377426 | 1 | 0.01 |
377445 | 1 | 0.01 |
377465 | 1 | 0.01 |
386916 | 1 | 0.01 |
387025 | 1 | 0.01 |
387121 | 1 | 0.01 |
387122 | 1 | 0.01 |
387145 | 1 | 0.01 |
387212 | 1 | 0.01 |
387214 | 1 | 0.01 |
387225 | 1 | 0.01 |
387226 | 1 | 0.01 |
387231 | 1 | 0.01 |
387232 | 1 | 0.01 |
387233 | 1 | 0.01 |
387236 | 1 | 0.01 |
387244 | 1 | 0.01 |
387252 | 1 | 0.01 |
387343 | 1 | 0.01 |
387344 | 1 | 0.01 |
387345 | 1 | 0.01 |
387353 | 1 | 0.01 |
387364 | 1 | 0.01 |
387366 | 1 | 0.01 |
387424 | 1 | 0.01 |
387433 | 1 | 0.01 |
387461 | 1 | 0.01 |
387655 | 1 | 0.01 |
396713 | 1 | 0.01 |
396814 | 1 | 0.01 |
397225 | 1 | 0.01 |
397246 | 1 | 0.01 |
397261 | 1 | 0.01 |
397262 | 1 | 0.01 |
397263 | 1 | 0.01 |
397265 | 1 | 0.01 |
397321 | 1 | 0.01 |
397331 | 1 | 0.01 |
397446 | 1 | 0.01 |
397463 | 1 | 0.01 |
397464 | 1 | 0.01 |
406623 | 1 | 0.01 |
406626 | 1 | 0.01 |
406643 | 1 | 0.01 |
406652 | 1 | 0.01 |
406731 | 1 | 0.01 |
406744 | 1 | 0.01 |
406764 | 1 | 0.01 |
406765 | 1 | 0.01 |
406766 | 1 | 0.01 |
406816 | 1 | 0.01 |
406834 | 1 | 0.01 |
406852 | 1 | 0.01 |
406923 | 1 | 0.01 |
406966 | 1 | 0.01 |
407011 | 1 | 0.01 |
407012 | 1 | 0.01 |
407015 | 1 | 0.01 |
407016 | 1 | 0.01 |
407035 | 1 | 0.01 |
407045 | 1 | 0.01 |
407116 | 1 | 0.01 |
407123 | 1 | 0.01 |
407133 | 1 | 0.01 |
407134 | 1 | 0.01 |
407135 | 1 | 0.01 |
407163 | 1 | 0.01 |
407215 | 1 | 0.01 |
407223 | 1 | 0.01 |
407224 | 1 | 0.01 |
407231 | 1 | 0.01 |
407233 | 1 | 0.01 |
407325 | 1 | 0.01 |
407326 | 1 | 0.01 |
407333 | 1 | 0.01 |
407342 | 1 | 0.01 |
407466 | 1 | 0.01 |
416644 | 1 | 0.01 |
416664 | 1 | 0.01 |
416665 | 1 | 0.01 |
416715 | 1 | 0.01 |
416724 | 1 | 0.01 |
416742 | 1 | 0.01 |
416743 | 1 | 0.01 |
416746 | 1 | 0.01 |
416762 | 1 | 0.01 |
416764 | 1 | 0.01 |
416835 | 1 | 0.01 |
416856 | 1 | 0.01 |
416865 | 1 | 0.01 |
416866 | 1 | 0.01 |
416915 | 1 | 0.01 |
416916 | 1 | 0.01 |
416924 | 1 | 0.01 |
416931 | 1 | 0.01 |
416942 | 1 | 0.01 |
416952 | 1 | 0.01 |
416961 | 1 | 0.01 |
416962 | 1 | 0.01 |
417046 | 1 | 0.01 |
417051 | 1 | 0.01 |
417145 | 1 | 0.01 |
417146 | 1 | 0.01 |
417154 | 1 | 0.01 |
417161 | 1 | 0.01 |
417162 | 1 | 0.01 |
417163 | 1 | 0.01 |
417165 | 1 | 0.01 |
417166 | 1 | 0.01 |
417366 | 1 | 0.01 |
426752 | 1 | 0.01 |
426915 | 1 | 0.01 |
426964 | 1 | 0.01 |
427034 | 1 | 0.01 |
427043 | 1 | 0.01 |
Zone_summary
can be used in conjunction with
dplyr::filter
to produce summaries for just one fleet
(Access Area fleet).
zone_out <-
scallopMainDataTable %>%
dplyr::filter(fleet == "Access Area") %>%
zone_summary(project = proj,
spat = scallopTenMNSQRSpatTable,
zone.dat = "ZONE_ID",
zone.spat = "TEN_ID",
output = "tab_plot",
count = TRUE,
breaks = NULL, n.breaks = 10,
na.rm = TRUE)
#> A line object has been specified, but lines is not in the mode
#> Adding lines to the mode...
zone_out$plot
ZONE_ID | n |
---|---|
387332 | 258 |
387322 | 208 |
387331 | 207 |
387314 | 205 |
406926 | 201 |
406932 | 194 |
387436 | 167 |
387446 | 157 |
387323 | 146 |
406925 | 140 |
387445 | 133 |
416862 | 121 |
387455 | 117 |
387465 | 109 |
387333 | 106 |
387313 | 104 |
416861 | 102 |
387426 | 98 |
406933 | 97 |
397364 | 94 |
387341 | 81 |
416662 | 80 |
406936 | 77 |
406942 | 76 |
416852 | 75 |
397365 | 74 |
406935 | 73 |
387456 | 68 |
397355 | 68 |
387435 | 66 |
397241 | 62 |
406931 | 62 |
406944 | 61 |
387324 | 58 |
397346 | 55 |
416843 | 55 |
387342 | 54 |
416661 | 54 |
377433 | 52 |
397356 | 51 |
416653 | 50 |
377424 | 49 |
387315 | 47 |
387321 | 46 |
406943 | 46 |
416851 | 45 |
387425 | 42 |
416966 | 40 |
406945 | 39 |
377423 | 36 |
377442 | 33 |
416853 | 33 |
377443 | 32 |
397366 | 32 |
416643 | 32 |
416842 | 31 |
377414 | 30 |
416652 | 27 |
377415 | 26 |
387466 | 22 |
406811 | 22 |
416642 | 22 |
397242 | 21 |
377432 | 20 |
387464 | 19 |
416651 | 19 |
416863 | 19 |
377413 | 15 |
406812 | 15 |
416663 | 15 |
397251 | 14 |
416654 | 14 |
377434 | 13 |
416765 | 13 |
387325 | 12 |
377452 | 11 |
387334 | 11 |
416766 | 11 |
377425 | 10 |
397345 | 9 |
416844 | 9 |
416956 | 9 |
397354 | 8 |
387311 | 7 |
387351 | 7 |
397363 | 7 |
387463 | 6 |
387312 | 5 |
387335 | 5 |
406954 | 5 |
416641 | 5 |
416756 | 5 |
417031 | 5 |
377422 | 4 |
377444 | 4 |
387032 | 4 |
387336 | 4 |
387362 | 4 |
387432 | 4 |
406611 | 4 |
406831 | 4 |
406924 | 4 |
377416 | 3 |
387242 | 3 |
387434 | 3 |
387452 | 3 |
397232 | 3 |
397333 | 3 |
397334 | 3 |
397342 | 3 |
406813 | 3 |
406821 | 3 |
406861 | 3 |
406915 | 3 |
406934 | 3 |
406946 | 3 |
406952 | 3 |
407246 | 3 |
407255 | 3 |
407343 | 3 |
416854 | 3 |
416945 | 3 |
416965 | 3 |
417042 | 3 |
367322 | 2 |
367614 | 2 |
377323 | 2 |
377435 | 2 |
377453 | 2 |
387241 | 2 |
387246 | 2 |
387352 | 2 |
387365 | 2 |
387411 | 2 |
387414 | 2 |
387415 | 2 |
387422 | 2 |
387454 | 2 |
387462 | 2 |
396916 | 2 |
397313 | 2 |
397322 | 2 |
397362 | 2 |
397426 | 2 |
397456 | 2 |
406613 | 2 |
406735 | 2 |
406862 | 2 |
406941 | 2 |
406955 | 2 |
407032 | 2 |
407355 | 2 |
416755 | 2 |
416864 | 2 |
416943 | 2 |
416953 | 2 |
417262 | 2 |
347415 | 1 |
347535 | 1 |
357313 | 1 |
357322 | 1 |
357346 | 1 |
357445 | 1 |
357516 | 1 |
367216 | 1 |
367444 | 1 |
367536 | 1 |
377021 | 1 |
377224 | 1 |
377311 | 1 |
377312 | 1 |
377332 | 1 |
377346 | 1 |
377364 | 1 |
377366 | 1 |
377411 | 1 |
377426 | 1 |
377445 | 1 |
377465 | 1 |
387121 | 1 |
387122 | 1 |
387145 | 1 |
387212 | 1 |
387214 | 1 |
387225 | 1 |
387226 | 1 |
387232 | 1 |
387233 | 1 |
387236 | 1 |
387244 | 1 |
387316 | 1 |
387326 | 1 |
387343 | 1 |
387345 | 1 |
387353 | 1 |
387355 | 1 |
387366 | 1 |
387416 | 1 |
387424 | 1 |
387433 | 1 |
387444 | 1 |
387461 | 1 |
387655 | 1 |
397211 | 1 |
397212 | 1 |
397231 | 1 |
397234 | 1 |
397261 | 1 |
397262 | 1 |
397263 | 1 |
397265 | 1 |
397312 | 1 |
397314 | 1 |
397315 | 1 |
397321 | 1 |
397324 | 1 |
397326 | 1 |
397331 | 1 |
397332 | 1 |
397336 | 1 |
397343 | 1 |
397344 | 1 |
397353 | 1 |
397446 | 1 |
397464 | 1 |
397465 | 1 |
397466 | 1 |
406643 | 1 |
406652 | 1 |
406712 | 1 |
406714 | 1 |
406716 | 1 |
406724 | 1 |
406742 | 1 |
406816 | 1 |
406822 | 1 |
406835 | 1 |
406841 | 1 |
406852 | 1 |
406916 | 1 |
406923 | 1 |
407016 | 1 |
407035 | 1 |
407045 | 1 |
407111 | 1 |
407113 | 1 |
407121 | 1 |
407251 | 1 |
407326 | 1 |
407336 | 1 |
407342 | 1 |
407344 | 1 |
407345 | 1 |
407362 | 1 |
407363 | 1 |
416644 | 1 |
416664 | 1 |
416711 | 1 |
416715 | 1 |
416722 | 1 |
416742 | 1 |
416744 | 1 |
416746 | 1 |
416856 | 1 |
416866 | 1 |
416931 | 1 |
416932 | 1 |
416933 | 1 |
416935 | 1 |
416952 | 1 |
416955 | 1 |
416961 | 1 |
416963 | 1 |
417051 | 1 |
417146 | 1 |
Zone frequency (Days at Sea fleet).
zone_out <-
scallopMainDataTable %>%
dplyr::filter(fleet == "Days at Sea") %>%
zone_summary(project = proj,
spat = scallopTenMNSQRSpatTable,
zone.dat = "ZONE_ID",
zone.spat = "TEN_ID",
output = "tab_plot",
count = TRUE,
breaks = NULL, n.breaks = 10,
na.rm = TRUE)
#> A line object has been specified, but lines is not in the mode
#> Adding lines to the mode...
zone_out$plot
ZONE_ID | n |
---|---|
416965 | 262 |
406915 | 148 |
406916 | 136 |
397315 | 95 |
416966 | 95 |
397213 | 91 |
397232 | 88 |
416944 | 78 |
397231 | 77 |
397363 | 70 |
416955 | 66 |
397325 | 63 |
406811 | 62 |
426764 | 58 |
407364 | 57 |
407242 | 56 |
406715 | 54 |
407262 | 53 |
407365 | 52 |
407263 | 51 |
397212 | 45 |
406714 | 45 |
387312 | 44 |
397223 | 44 |
397354 | 44 |
397335 | 43 |
406713 | 41 |
406723 | 41 |
407254 | 41 |
397214 | 39 |
407243 | 39 |
407356 | 38 |
407366 | 38 |
407253 | 37 |
407355 | 37 |
397314 | 36 |
407241 | 35 |
397326 | 34 |
416714 | 34 |
397211 | 33 |
397362 | 33 |
406722 | 33 |
406821 | 33 |
397336 | 32 |
406716 | 32 |
407244 | 32 |
407261 | 32 |
406611 | 31 |
407363 | 30 |
397344 | 29 |
407112 | 29 |
407251 | 29 |
397316 | 28 |
407121 | 28 |
416954 | 28 |
397345 | 27 |
407131 | 27 |
407113 | 26 |
387313 | 25 |
407252 | 25 |
416713 | 25 |
387311 | 24 |
397353 | 23 |
407354 | 23 |
406724 | 21 |
407245 | 21 |
416933 | 21 |
416934 | 21 |
397222 | 20 |
406712 | 20 |
407226 | 20 |
407346 | 20 |
416945 | 20 |
426763 | 20 |
407345 | 18 |
397221 | 17 |
397364 | 17 |
416964 | 17 |
397324 | 16 |
397343 | 16 |
406733 | 16 |
406832 | 16 |
406822 | 14 |
406831 | 14 |
407234 | 14 |
407264 | 14 |
397313 | 13 |
406826 | 13 |
416844 | 13 |
397241 | 12 |
397352 | 12 |
397355 | 12 |
397361 | 12 |
406732 | 12 |
416711 | 12 |
416816 | 12 |
416932 | 12 |
397334 | 11 |
406965 | 11 |
407122 | 11 |
406833 | 10 |
406841 | 10 |
407111 | 10 |
407225 | 10 |
427044 | 10 |
387416 | 9 |
406721 | 9 |
407115 | 9 |
407256 | 9 |
416861 | 9 |
427045 | 9 |
397242 | 8 |
416956 | 8 |
417164 | 8 |
427065 | 8 |
397224 | 7 |
406711 | 7 |
407114 | 7 |
407235 | 7 |
407246 | 7 |
407353 | 7 |
397312 | 6 |
397333 | 6 |
397365 | 6 |
397366 | 6 |
407236 | 6 |
407255 | 6 |
416826 | 6 |
416834 | 6 |
416845 | 6 |
387465 | 5 |
397342 | 5 |
406814 | 5 |
406815 | 5 |
407232 | 5 |
416712 | 5 |
416765 | 5 |
416825 | 5 |
426765 | 5 |
427056 | 5 |
377424 | 4 |
397251 | 4 |
397346 | 4 |
406914 | 4 |
407132 | 4 |
407141 | 4 |
407352 | 4 |
407362 | 4 |
416721 | 4 |
416943 | 4 |
417031 | 4 |
417061 | 4 |
377323 | 3 |
377415 | 3 |
377452 | 3 |
387322 | 3 |
387333 | 3 |
387466 | 3 |
397351 | 3 |
397356 | 3 |
406612 | 3 |
406725 | 3 |
406812 | 3 |
406813 | 3 |
406835 | 3 |
406936 | 3 |
407055 | 3 |
407151 | 3 |
407266 | 3 |
416654 | 3 |
417062 | 3 |
427066 | 3 |
377325 | 2 |
377335 | 2 |
377425 | 2 |
377464 | 2 |
387315 | 2 |
387331 | 2 |
387332 | 2 |
387342 | 2 |
387354 | 2 |
387363 | 2 |
387434 | 2 |
387445 | 2 |
387455 | 2 |
397233 | 2 |
397311 | 2 |
397323 | 2 |
397465 | 2 |
406621 | 2 |
407013 | 2 |
407021 | 2 |
407041 | 2 |
407142 | 2 |
407216 | 2 |
407221 | 2 |
407265 | 2 |
407316 | 2 |
407335 | 2 |
407343 | 2 |
407344 | 2 |
407361 | 2 |
416756 | 2 |
416824 | 2 |
416833 | 2 |
416841 | 2 |
416912 | 2 |
416922 | 2 |
417055 | 2 |
426762 | 2 |
0 | 1 |
347231 | 1 |
347336 | 1 |
357232 | 1 |
357325 | 1 |
377143 | 1 |
377214 | 1 |
377231 | 1 |
377321 | 1 |
377322 | 1 |
377422 | 1 |
377443 | 1 |
377453 | 1 |
386916 | 1 |
387025 | 1 |
387231 | 1 |
387252 | 1 |
387314 | 1 |
387316 | 1 |
387321 | 1 |
387323 | 1 |
387324 | 1 |
387326 | 1 |
387334 | 1 |
387336 | 1 |
387341 | 1 |
387344 | 1 |
387351 | 1 |
387352 | 1 |
387355 | 1 |
387364 | 1 |
387411 | 1 |
387425 | 1 |
387436 | 1 |
387444 | 1 |
387446 | 1 |
396713 | 1 |
396814 | 1 |
397225 | 1 |
397234 | 1 |
397246 | 1 |
397332 | 1 |
397426 | 1 |
397463 | 1 |
397466 | 1 |
406623 | 1 |
406626 | 1 |
406731 | 1 |
406742 | 1 |
406744 | 1 |
406764 | 1 |
406765 | 1 |
406766 | 1 |
406834 | 1 |
406924 | 1 |
406926 | 1 |
406935 | 1 |
406945 | 1 |
406966 | 1 |
407011 | 1 |
407012 | 1 |
407015 | 1 |
407116 | 1 |
407123 | 1 |
407133 | 1 |
407134 | 1 |
407135 | 1 |
407163 | 1 |
407215 | 1 |
407223 | 1 |
407224 | 1 |
407231 | 1 |
407233 | 1 |
407325 | 1 |
407333 | 1 |
407336 | 1 |
407466 | 1 |
416653 | 1 |
416663 | 1 |
416665 | 1 |
416722 | 1 |
416724 | 1 |
416743 | 1 |
416744 | 1 |
416762 | 1 |
416764 | 1 |
416835 | 1 |
416854 | 1 |
416862 | 1 |
416865 | 1 |
416915 | 1 |
416916 | 1 |
416924 | 1 |
416935 | 1 |
416942 | 1 |
416962 | 1 |
416963 | 1 |
417046 | 1 |
417145 | 1 |
417154 | 1 |
417161 | 1 |
417162 | 1 |
417163 | 1 |
417165 | 1 |
417166 | 1 |
417366 | 1 |
426752 | 1 |
426915 | 1 |
426964 | 1 |
427034 | 1 |
427043 | 1 |
FishSET’s `zone_summary’ function be used to aggregate total landings in each zone.
zone_out <-
zone_summary(scallopMainDataTable,
project = proj,
spat = scallopTenMNSQRSpatTable,
zone.dat = "ZONE_ID",
zone.spat = "TEN_ID",
count = FALSE,
var = "LANDED_OBSCURED", fun = "sum",
breaks = c(1e3, 1e4, 5e4, 1e5, seq(1e6, 1.3e7, 2e6)),
output = "tab_plot", na.rm = TRUE)
#> A line object has been specified, but lines is not in the mode
#> Adding lines to the mode...
zone_out$plot
ZONE_ID | LANDED_OBSCURED |
---|---|
0 | 9.25 |
347231 | 4.09 |
347336 | 7.05 |
347415 | 5.1 |
347535 | 8 |
357232 | 0.38 |
357313 | 19.38 |
357322 | 16.28 |
357325 | 8.46 |
357346 | 8.57 |
357445 | 18.02 |
357516 | 13.54 |
367216 | 0.23 |
367322 | 34.26 |
367444 | 16.37 |
367536 | 17.75 |
367614 | 25.66 |
377021 | 19.06 |
377143 | 1.28 |
377214 | 6.91 |
377224 | 18.54 |
377231 | 18.82 |
377311 | 15.35 |
377312 | 11.21 |
377321 | 13.72 |
377322 | 5.82 |
377323 | 39.4 |
377325 | 42.44 |
377332 | 15.06 |
377335 | 28.53 |
377346 | 18.55 |
377364 | 18.32 |
377366 | 12.78 |
377411 | 1.35 |
377413 | 205.91 |
377414 | 450.2 |
377415 | 366.09 |
377416 | 37.6 |
377422 | 55.89 |
377423 | 433.28 |
377424 | 607.63 |
377425 | 125.49 |
377426 | 18.44 |
377432 | 287.28 |
377433 | 668.76 |
377434 | 166.57 |
377435 | 18.32 |
377442 | 470.09 |
377443 | 360.51 |
377444 | 51.7 |
377445 | 19.72 |
377452 | 197.48 |
377453 | 43.29 |
377464 | 14.9 |
377465 | 4.05 |
386916 | 16.4 |
387025 | 21.22 |
387032 | 68.92 |
387121 | 7.16 |
387122 | 11.06 |
387145 | 5.41 |
387212 | 15.87 |
387214 | 19.31 |
387225 | 9.97 |
387226 | 16.31 |
387231 | 31.66 |
387232 | 5.52 |
387233 | 7.28 |
387236 | 18.58 |
387241 | 31.76 |
387242 | 35.71 |
387244 | 16.54 |
387246 | 35.4 |
387252 | 8.57 |
387311 | 463.41 |
387312 | 608.28 |
387313 | 1,404.89 |
387314 | 2,166.96 |
387315 | 497.77 |
387316 | 17.44 |
387321 | 676.09 |
387322 | 2,941.77 |
387323 | 1,892.06 |
387324 | 543.66 |
387325 | 121.75 |
387326 | 19.86 |
387331 | 3,012.32 |
387332 | 3,592.69 |
387333 | 1,399.13 |
387334 | 113.45 |
387335 | 44.94 |
387336 | 29.01 |
387341 | 996.9 |
387342 | 660.2 |
387343 | 15.68 |
387344 | 11.41 |
387345 | 12.1 |
387351 | 116.39 |
387352 | 35.08 |
387353 | 15.26 |
387354 | 8.67 |
387355 | 42.13 |
387362 | 59.19 |
387363 | 41.97 |
387364 | 7.65 |
387365 | 22.69 |
387366 | 9 |
387411 | 36.98 |
387414 | 32.49 |
387415 | 28.57 |
387416 | 46.93 |
387422 | 20.12 |
387424 | 1.05 |
387425 | 470.72 |
387426 | 1,241.07 |
387432 | 48.62 |
387433 | 9.9 |
387434 | 43.73 |
387435 | 918.96 |
387436 | 2,365.39 |
387444 | 3.98 |
387445 | 1,677.6 |
387446 | 2,192 |
387452 | 6.38 |
387454 | 15.87 |
387455 | 1,501.39 |
387456 | 684.99 |
387461 | 16.29 |
387462 | 19.86 |
387463 | 77.89 |
387464 | 278.09 |
387465 | 1,273.04 |
387466 | 218.03 |
387655 | 16.93 |
396713 | 32.79 |
396814 | 2.99 |
396916 | 35.26 |
397211 | 600.24 |
397212 | 789.34 |
397213 | 1,603.78 |
397214 | 521.94 |
397221 | 231.84 |
397222 | 436.89 |
397223 | 825.97 |
397224 | 123.28 |
397225 | 3.91 |
397231 | 1,167.89 |
397232 | 1,261.3 |
397233 | 30.27 |
397234 | 18.71 |
397241 | 945.98 |
397242 | 275.42 |
397246 | 6.24 |
397251 | 199.55 |
397261 | 1.63 |
397262 | 8.45 |
397263 | 16.67 |
397265 | 16.59 |
397311 | 28.06 |
397312 | 76.09 |
397313 | 161.79 |
397314 | 397.49 |
397315 | 1,572.3 |
397316 | 562.6 |
397321 | 0.51 |
397322 | 8.88 |
397323 | 46.24 |
397324 | 275.6 |
397325 | 1,163.86 |
397326 | 680.71 |
397331 | 11.13 |
397332 | 26.77 |
397333 | 56.98 |
397334 | 195.16 |
397335 | 829.41 |
397336 | 532.25 |
397342 | 108.93 |
397343 | 214.7 |
397344 | 394.82 |
397345 | 481.81 |
397346 | 740.22 |
397351 | 65.5 |
397352 | 132.16 |
397353 | 364.49 |
397354 | 769.68 |
397355 | 1,060.39 |
397356 | 505.38 |
397361 | 101.09 |
397362 | 371.53 |
397363 | 838.3 |
397364 | 1,260.66 |
397365 | 845.8 |
397366 | 435.64 |
397426 | 47.87 |
397446 | 4.94 |
397456 | 14.52 |
397463 | 35.91 |
397464 | 6.05 |
397465 | 47.97 |
397466 | 33.32 |
406611 | 859.24 |
406612 | 62.34 |
406613 | 13.51 |
406621 | 63.49 |
406623 | 14.86 |
406626 | 19.97 |
406643 | 19.41 |
406652 | 16.28 |
406711 | 141.4 |
406712 | 318.84 |
406713 | 963.74 |
406714 | 1,178.26 |
406715 | 1,460.23 |
406716 | 926.24 |
406721 | 232.26 |
406722 | 786.33 |
406723 | 1,029 |
406724 | 423.68 |
406725 | 58.35 |
406731 | 17.04 |
406732 | 211.19 |
406733 | 240.34 |
406735 | 38.74 |
406742 | 17.94 |
406744 | 29.15 |
406764 | 19.99 |
406765 | 24.28 |
406766 | 41.51 |
406811 | 1,692.09 |
406812 | 315.57 |
406813 | 94.24 |
406814 | 127.86 |
406815 | 97.68 |
406816 | 16.72 |
406821 | 641.76 |
406822 | 325.11 |
406826 | 312.67 |
406831 | 303.19 |
406832 | 421.67 |
406833 | 242.52 |
406834 | 27.87 |
406835 | 64.23 |
406841 | 232.37 |
406852 | 12.19 |
406861 | 39.78 |
406862 | 30.11 |
406914 | 66.97 |
406915 | 2,693.93 |
406916 | 2,873.86 |
406923 | 18.9 |
406924 | 59.04 |
406925 | 1,855.35 |
406926 | 2,832.49 |
406931 | 815.89 |
406932 | 2,668.71 |
406933 | 1,350.58 |
406934 | 24.44 |
406935 | 946.1 |
406936 | 1,244.44 |
406941 | 11.59 |
406942 | 969.21 |
406943 | 690.91 |
406944 | 839.05 |
406945 | 588.62 |
406946 | 34.08 |
406952 | 43.46 |
406954 | 79.51 |
406955 | 12.28 |
406965 | 112.65 |
406966 | 2.73 |
407011 | 10.55 |
407012 | 10.54 |
407013 | 1.93 |
407015 | 0.56 |
407016 | 14.22 |
407021 | 41.65 |
407032 | 35.7 |
407035 | 17.44 |
407041 | 44.63 |
407045 | 8.37 |
407055 | 17.72 |
407111 | 171.5 |
407112 | 326.24 |
407113 | 259.39 |
407114 | 55.86 |
407115 | 35.59 |
407116 | 9.99 |
407121 | 513.41 |
407122 | 200.86 |
407123 | 0.98 |
407131 | 497.44 |
407132 | 62.31 |
407133 | 19.74 |
407134 | 11.46 |
407135 | 9.26 |
407141 | 29.87 |
407142 | 52.62 |
407151 | 75.45 |
407163 | 29.71 |
407215 | 3.84 |
407216 | 21.99 |
407221 | 29.96 |
407223 | 1.69 |
407224 | 28.65 |
407225 | 165.68 |
407226 | 445.45 |
407231 | 21.21 |
407232 | 37.23 |
407233 | 14.09 |
407234 | 258.64 |
407235 | 120.52 |
407236 | 60.2 |
407241 | 641.75 |
407242 | 1,039.24 |
407243 | 744.45 |
407244 | 575.49 |
407245 | 298.17 |
407246 | 89.87 |
407251 | 588.31 |
407252 | 374.35 |
407253 | 663.59 |
407254 | 763.38 |
407255 | 108.38 |
407256 | 114.61 |
407261 | 561.2 |
407262 | 810.66 |
407263 | 1,102.14 |
407264 | 258.76 |
407265 | 19.79 |
407266 | 46.11 |
407316 | 8.06 |
407325 | 14.97 |
407326 | 16.06 |
407333 | 24.62 |
407335 | 33.45 |
407336 | 32.48 |
407342 | 14.96 |
407343 | 53.54 |
407344 | 54.69 |
407345 | 307.7 |
407346 | 356.25 |
407352 | 73.62 |
407353 | 130.14 |
407354 | 424.77 |
407355 | 718.6 |
407356 | 640.95 |
407361 | 34.8 |
407362 | 82.18 |
407363 | 619.26 |
407364 | 953.13 |
407365 | 774.85 |
407366 | 742.88 |
407466 | 2.34 |
416641 | 87.62 |
416642 | 320.32 |
416643 | 447.06 |
416644 | 12.43 |
416651 | 244.7 |
416652 | 445.88 |
416653 | 727.75 |
416654 | 202.78 |
416661 | 801.7 |
416662 | 1,294.69 |
416663 | 253.66 |
416664 | 8.08 |
416665 | 31.08 |
416711 | 312.8 |
416712 | 126.24 |
416713 | 594.79 |
416714 | 749.09 |
416715 | 6.95 |
416721 | 56.7 |
416722 | 17.41 |
416724 | 6.52 |
416742 | 19.18 |
416743 | 26.12 |
416744 | 31.61 |
416746 | 5.36 |
416755 | 34.95 |
416756 | 101.52 |
416762 | 30.14 |
416764 | 16.63 |
416765 | 255.13 |
416766 | 182.65 |
416816 | 272.76 |
416824 | 59.49 |
416825 | 90.94 |
416826 | 149.41 |
416833 | 78.38 |
416834 | 84.77 |
416835 | 21.81 |
416841 | 21.83 |
416842 | 414.04 |
416843 | 777.62 |
416844 | 350.73 |
416845 | 124.43 |
416851 | 660.6 |
416852 | 1,092.63 |
416853 | 460.11 |
416854 | 79.03 |
416856 | 18.87 |
416861 | 1,428.56 |
416862 | 1,759.11 |
416863 | 254.12 |
416864 | 28.62 |
416865 | 46.85 |
416866 | 21.47 |
416912 | 26.55 |
416915 | 11.16 |
416916 | 17.97 |
416922 | 57.75 |
416924 | 9.16 |
416931 | 12.77 |
416932 | 263.93 |
416933 | 390.83 |
416934 | 204.99 |
416935 | 29.96 |
416942 | 7.71 |
416943 | 98.44 |
416944 | 1,237.49 |
416945 | 366.91 |
416952 | 2.82 |
416953 | 34.7 |
416954 | 474.66 |
416955 | 967.83 |
416956 | 211.85 |
416961 | 18.48 |
416962 | 5.94 |
416963 | 35.36 |
416964 | 314.58 |
416965 | 3,756.98 |
416966 | 1,947.93 |
417031 | 145.06 |
417042 | 18 |
417046 | 45.71 |
417051 | 19.49 |
417055 | 36.19 |
417061 | 80.1 |
417062 | 33.55 |
417145 | 0.8 |
417146 | 11.1 |
417154 | 4.09 |
417161 | 0.55 |
417162 | 1.13 |
417163 | 15.55 |
417164 | 83.43 |
417165 | 6.94 |
417166 | 0.59 |
417262 | 28.45 |
417366 | 5.19 |
426752 | 14.33 |
426762 | 41.13 |
426763 | 416.02 |
426764 | 1,411.12 |
426765 | 135.53 |
426915 | 16.68 |
426964 | 52.44 |
427034 | 1.68 |
427043 | 33.06 |
427044 | 140.01 |
427045 | 162.57 |
427056 | 50.11 |
427065 | 161.07 |
427066 | 50 |
FishSET’s `zone_summary’ function be used to construct average landings for trips in each zone.
zone_out <-
zone_summary(scallopMainDataTable,
project = proj,
spat = scallopTenMNSQRSpatTable,
zone.dat = "ZONE_ID",
zone.spat = "TEN_ID",
count = FALSE,
var = "LANDED_OBSCURED", fun = "mean",
breaks = c(1e3, 5e3, seq(1e4, 4e4, 5e3)),
output = "tab_plot", na.rm = TRUE)
#> A line object has been specified, but lines is not in the mode
#> Adding lines to the mode...
zone_out$plot
ZONE_ID | LANDED_OBSCURED |
---|---|
0 | 9.25 |
347231 | 4.09 |
347336 | 7.05 |
347415 | 5.1 |
347535 | 8 |
357232 | 0.38 |
357313 | 19.38 |
357322 | 16.28 |
357325 | 8.46 |
357346 | 8.57 |
357445 | 18.02 |
357516 | 13.54 |
367216 | 0.23 |
367322 | 17.13 |
367444 | 16.37 |
367536 | 17.75 |
367614 | 12.83 |
377021 | 19.06 |
377143 | 1.28 |
377214 | 6.91 |
377224 | 18.54 |
377231 | 18.82 |
377311 | 15.35 |
377312 | 11.21 |
377321 | 13.72 |
377322 | 5.82 |
377323 | 7.88 |
377325 | 21.22 |
377332 | 15.06 |
377335 | 14.27 |
377346 | 18.55 |
377364 | 18.32 |
377366 | 12.78 |
377411 | 1.35 |
377413 | 13.73 |
377414 | 15.01 |
377415 | 12.62 |
377416 | 12.53 |
377422 | 11.18 |
377423 | 12.04 |
377424 | 11.46 |
377425 | 10.46 |
377426 | 18.44 |
377432 | 14.36 |
377433 | 12.86 |
377434 | 12.81 |
377435 | 9.16 |
377442 | 14.25 |
377443 | 10.92 |
377444 | 12.92 |
377445 | 19.72 |
377452 | 14.11 |
377453 | 14.43 |
377464 | 7.45 |
377465 | 4.05 |
386916 | 16.4 |
387025 | 21.22 |
387032 | 17.23 |
387121 | 7.16 |
387122 | 11.06 |
387145 | 5.41 |
387212 | 15.87 |
387214 | 19.31 |
387225 | 9.97 |
387226 | 16.31 |
387231 | 31.66 |
387232 | 5.52 |
387233 | 7.28 |
387236 | 18.58 |
387241 | 15.88 |
387242 | 11.9 |
387244 | 16.54 |
387246 | 17.7 |
387252 | 8.57 |
387311 | 14.95 |
387312 | 12.41 |
387313 | 10.89 |
387314 | 10.52 |
387315 | 10.16 |
387316 | 8.72 |
387321 | 14.38 |
387322 | 13.94 |
387323 | 12.87 |
387324 | 9.21 |
387325 | 10.15 |
387326 | 9.93 |
387331 | 14.41 |
387332 | 13.82 |
387333 | 12.84 |
387334 | 9.45 |
387335 | 8.99 |
387336 | 5.8 |
387341 | 12.16 |
387342 | 11.79 |
387343 | 15.68 |
387344 | 11.41 |
387345 | 12.1 |
387351 | 14.55 |
387352 | 11.69 |
387353 | 15.26 |
387354 | 4.34 |
387355 | 21.07 |
387362 | 14.8 |
387363 | 20.99 |
387364 | 7.65 |
387365 | 11.35 |
387366 | 9 |
387411 | 12.33 |
387414 | 16.24 |
387415 | 14.29 |
387416 | 4.69 |
387422 | 10.06 |
387424 | 1.05 |
387425 | 10.95 |
387426 | 12.66 |
387432 | 12.15 |
387433 | 9.9 |
387434 | 8.75 |
387435 | 13.92 |
387436 | 14.08 |
387444 | 1.99 |
387445 | 12.43 |
387446 | 13.87 |
387452 | 2.13 |
387454 | 7.94 |
387455 | 12.62 |
387456 | 10.07 |
387461 | 16.29 |
387462 | 9.93 |
387463 | 12.98 |
387464 | 14.64 |
387465 | 11.17 |
387466 | 8.72 |
387655 | 16.93 |
396713 | 32.79 |
396814 | 2.99 |
396916 | 17.63 |
397211 | 17.65 |
397212 | 17.16 |
397213 | 17.62 |
397214 | 13.38 |
397221 | 13.64 |
397222 | 21.84 |
397223 | 18.77 |
397224 | 17.61 |
397225 | 3.91 |
397231 | 14.97 |
397232 | 13.86 |
397233 | 15.13 |
397234 | 9.35 |
397241 | 12.78 |
397242 | 9.5 |
397246 | 6.24 |
397251 | 11.09 |
397261 | 1.63 |
397262 | 8.45 |
397263 | 16.67 |
397265 | 16.59 |
397311 | 14.03 |
397312 | 10.87 |
397313 | 10.79 |
397314 | 10.74 |
397315 | 16.38 |
397316 | 20.09 |
397321 | 0.51 |
397322 | 4.44 |
397323 | 23.12 |
397324 | 16.21 |
397325 | 18.47 |
397326 | 19.45 |
397331 | 11.13 |
397332 | 13.39 |
397333 | 6.33 |
397334 | 13.94 |
397335 | 19.29 |
397336 | 16.13 |
397342 | 13.62 |
397343 | 12.63 |
397344 | 13.16 |
397345 | 13.38 |
397346 | 12.55 |
397351 | 21.83 |
397352 | 11.01 |
397353 | 15.19 |
397354 | 14.8 |
397355 | 13.25 |
397356 | 9.36 |
397361 | 8.42 |
397362 | 10.62 |
397363 | 10.89 |
397364 | 11.36 |
397365 | 10.57 |
397366 | 11.46 |
397426 | 15.96 |
397446 | 4.94 |
397456 | 7.26 |
397463 | 35.91 |
397464 | 6.05 |
397465 | 15.99 |
397466 | 16.66 |
406611 | 24.55 |
406612 | 20.78 |
406613 | 6.75 |
406621 | 31.74 |
406623 | 14.86 |
406626 | 19.97 |
406643 | 19.41 |
406652 | 16.28 |
406711 | 20.2 |
406712 | 15.18 |
406713 | 23.51 |
406714 | 25.61 |
406715 | 27.04 |
406716 | 28.07 |
406721 | 25.81 |
406722 | 23.83 |
406723 | 25.1 |
406724 | 19.26 |
406725 | 19.45 |
406731 | 17.04 |
406732 | 17.6 |
406733 | 15.02 |
406735 | 19.37 |
406742 | 8.97 |
406744 | 29.15 |
406764 | 19.99 |
406765 | 24.28 |
406766 | 41.51 |
406811 | 20.14 |
406812 | 17.53 |
406813 | 15.71 |
406814 | 25.57 |
406815 | 19.54 |
406816 | 16.72 |
406821 | 17.83 |
406822 | 21.67 |
406826 | 24.05 |
406831 | 16.84 |
406832 | 26.35 |
406833 | 24.25 |
406834 | 27.87 |
406835 | 16.06 |
406841 | 21.12 |
406852 | 12.19 |
406861 | 13.26 |
406862 | 15.05 |
406914 | 16.74 |
406915 | 17.84 |
406916 | 20.98 |
406923 | 18.9 |
406924 | 11.81 |
406925 | 13.25 |
406926 | 14.02 |
406931 | 13.16 |
406932 | 13.76 |
406933 | 13.92 |
406934 | 8.15 |
406935 | 12.79 |
406936 | 15.56 |
406941 | 5.8 |
406942 | 12.75 |
406943 | 15.02 |
406944 | 13.75 |
406945 | 14.72 |
406946 | 11.36 |
406952 | 14.49 |
406954 | 15.9 |
406955 | 6.14 |
406965 | 10.24 |
406966 | 2.73 |
407011 | 10.55 |
407012 | 10.54 |
407013 | 0.97 |
407015 | 0.56 |
407016 | 14.22 |
407021 | 20.82 |
407032 | 17.85 |
407035 | 17.44 |
407041 | 22.31 |
407045 | 8.37 |
407055 | 5.91 |
407111 | 15.59 |
407112 | 11.25 |
407113 | 9.61 |
407114 | 7.98 |
407115 | 3.95 |
407116 | 9.99 |
407121 | 17.7 |
407122 | 18.26 |
407123 | 0.98 |
407131 | 18.42 |
407132 | 15.58 |
407133 | 19.74 |
407134 | 11.46 |
407135 | 9.26 |
407141 | 7.47 |
407142 | 26.31 |
407151 | 25.15 |
407163 | 29.71 |
407215 | 3.84 |
407216 | 10.99 |
407221 | 14.98 |
407223 | 1.69 |
407224 | 28.65 |
407225 | 16.57 |
407226 | 22.27 |
407231 | 21.21 |
407232 | 7.45 |
407233 | 14.09 |
407234 | 18.47 |
407235 | 17.22 |
407236 | 10.03 |
407241 | 18.34 |
407242 | 18.56 |
407243 | 19.09 |
407244 | 17.98 |
407245 | 14.2 |
407246 | 8.99 |
407251 | 19.61 |
407252 | 14.97 |
407253 | 17.93 |
407254 | 18.62 |
407255 | 12.04 |
407256 | 12.73 |
407261 | 17.54 |
407262 | 15.3 |
407263 | 21.61 |
407264 | 18.48 |
407265 | 9.9 |
407266 | 15.37 |
407316 | 4.03 |
407325 | 14.97 |
407326 | 16.06 |
407333 | 24.62 |
407335 | 16.72 |
407336 | 16.24 |
407342 | 14.96 |
407343 | 10.71 |
407344 | 18.23 |
407345 | 16.19 |
407346 | 17.81 |
407352 | 18.4 |
407353 | 18.59 |
407354 | 18.47 |
407355 | 18.43 |
407356 | 16.87 |
407361 | 17.4 |
407362 | 16.44 |
407363 | 19.98 |
407364 | 16.72 |
407365 | 14.9 |
407366 | 19.55 |
407466 | 2.34 |
416641 | 17.52 |
416642 | 14.56 |
416643 | 13.97 |
416644 | 12.43 |
416651 | 12.88 |
416652 | 16.51 |
416653 | 14.27 |
416654 | 11.93 |
416661 | 14.85 |
416662 | 16.18 |
416663 | 15.85 |
416664 | 8.08 |
416665 | 31.08 |
416711 | 24.06 |
416712 | 25.25 |
416713 | 23.79 |
416714 | 22.03 |
416715 | 6.95 |
416721 | 14.18 |
416722 | 8.71 |
416724 | 6.52 |
416742 | 19.18 |
416743 | 26.12 |
416744 | 15.81 |
416746 | 5.36 |
416755 | 17.47 |
416756 | 14.5 |
416762 | 30.14 |
416764 | 16.63 |
416765 | 14.17 |
416766 | 16.6 |
416816 | 22.73 |
416824 | 29.75 |
416825 | 18.19 |
416826 | 24.9 |
416833 | 39.19 |
416834 | 14.13 |
416835 | 21.81 |
416841 | 10.92 |
416842 | 13.36 |
416843 | 14.14 |
416844 | 15.94 |
416845 | 20.74 |
416851 | 14.68 |
416852 | 14.57 |
416853 | 13.94 |
416854 | 19.76 |
416856 | 18.87 |
416861 | 12.87 |
416862 | 14.42 |
416863 | 13.37 |
416864 | 14.31 |
416865 | 46.85 |
416866 | 21.47 |
416912 | 13.28 |
416915 | 11.16 |
416916 | 17.97 |
416922 | 28.88 |
416924 | 9.16 |
416931 | 12.77 |
416932 | 20.3 |
416933 | 17.77 |
416934 | 9.76 |
416935 | 14.98 |
416942 | 7.71 |
416943 | 16.41 |
416944 | 15.87 |
416945 | 15.95 |
416952 | 2.82 |
416953 | 17.35 |
416954 | 16.95 |
416955 | 14.45 |
416956 | 12.46 |
416961 | 18.48 |
416962 | 5.94 |
416963 | 17.68 |
416964 | 18.5 |
416965 | 14.18 |
416966 | 14.43 |
417031 | 16.12 |
417042 | 6 |
417046 | 45.71 |
417051 | 19.49 |
417055 | 18.09 |
417061 | 20.03 |
417062 | 11.18 |
417145 | 0.8 |
417146 | 11.1 |
417154 | 4.09 |
417161 | 0.55 |
417162 | 1.13 |
417163 | 15.55 |
417164 | 10.43 |
417165 | 6.94 |
417166 | 0.59 |
417262 | 14.22 |
417366 | 5.19 |
426752 | 14.33 |
426762 | 20.57 |
426763 | 20.8 |
426764 | 24.33 |
426765 | 27.11 |
426915 | 16.68 |
426964 | 52.44 |
427034 | 1.68 |
427043 | 33.06 |
427044 | 14 |
427045 | 18.06 |
427056 | 10.02 |
427065 | 20.13 |
427066 | 16.67 |
Using the fun="percent"
option computes the percent of
total landings.
zone_out <-
zone_summary(scallopMainDataTable, project = proj,
spat = scallopTenMNSQRSpatTable,
zone.dat = "ZONE_ID",
zone.spat = "TEN_ID",
count = FALSE,
var = "LANDED_OBSCURED", fun = "percent",
breaks = seq(0, 2, .2),
bin_colors = c("white", fishset_viridis(10)),
output = "tab_plot", na.rm = TRUE)
#> A line object has been specified, but lines is not in the mode
#> Adding lines to the mode...
zone_out$plot
zone_out$table %>%
pretty_lab(cols = c("LANDED_OBSCURED", "LANDED_OBSCURED_perc"), type = "scientific") %>%
pretty_tab_sb(width = "60%")
ZONE_ID | LANDED_OBSCURED | LANDED_OBSCURED_perc |
---|---|---|
0 | 9.25e+00 | 6.24e-03 |
347231 | 4.09e+00 | 2.76e-03 |
347336 | 7.05e+00 | 4.76e-03 |
347415 | 5.10e+00 | 3.44e-03 |
347535 | 8.00e+00 | 5.39e-03 |
357232 | 3.83e-01 | 2.58e-04 |
357313 | 1.94e+01 | 1.31e-02 |
357322 | 1.63e+01 | 1.10e-02 |
357325 | 8.46e+00 | 5.71e-03 |
357346 | 8.57e+00 | 5.78e-03 |
357445 | 1.80e+01 | 1.22e-02 |
357516 | 1.35e+01 | 9.14e-03 |
367216 | 2.27e-01 | 1.53e-04 |
367322 | 3.43e+01 | 2.31e-02 |
367444 | 1.64e+01 | 1.10e-02 |
367536 | 1.77e+01 | 1.20e-02 |
367614 | 2.57e+01 | 1.73e-02 |
377021 | 1.91e+01 | 1.29e-02 |
377143 | 1.28e+00 | 8.61e-04 |
377214 | 6.91e+00 | 4.66e-03 |
377224 | 1.85e+01 | 1.25e-02 |
377231 | 1.88e+01 | 1.27e-02 |
377311 | 1.54e+01 | 1.04e-02 |
377312 | 1.12e+01 | 7.56e-03 |
377321 | 1.37e+01 | 9.25e-03 |
377322 | 5.82e+00 | 3.93e-03 |
377323 | 3.94e+01 | 2.66e-02 |
377325 | 4.24e+01 | 2.86e-02 |
377332 | 1.51e+01 | 1.02e-02 |
377335 | 2.85e+01 | 1.93e-02 |
377346 | 1.85e+01 | 1.25e-02 |
377364 | 1.83e+01 | 1.24e-02 |
377366 | 1.28e+01 | 8.62e-03 |
377411 | 1.35e+00 | 9.11e-04 |
377413 | 2.06e+02 | 1.39e-01 |
377414 | 4.50e+02 | 3.04e-01 |
377415 | 3.66e+02 | 2.47e-01 |
377416 | 3.76e+01 | 2.54e-02 |
377422 | 5.59e+01 | 3.77e-02 |
377423 | 4.33e+02 | 2.92e-01 |
377424 | 6.08e+02 | 4.10e-01 |
377425 | 1.25e+02 | 8.47e-02 |
377426 | 1.84e+01 | 1.24e-02 |
377432 | 2.87e+02 | 1.94e-01 |
377433 | 6.69e+02 | 4.51e-01 |
377434 | 1.67e+02 | 1.12e-01 |
377435 | 1.83e+01 | 1.24e-02 |
377442 | 4.70e+02 | 3.17e-01 |
377443 | 3.61e+02 | 2.43e-01 |
377444 | 5.17e+01 | 3.49e-02 |
377445 | 1.97e+01 | 1.33e-02 |
377452 | 1.97e+02 | 1.33e-01 |
377453 | 4.33e+01 | 2.92e-02 |
377464 | 1.49e+01 | 1.01e-02 |
377465 | 4.05e+00 | 2.73e-03 |
386916 | 1.64e+01 | 1.11e-02 |
387025 | 2.12e+01 | 1.43e-02 |
387032 | 6.89e+01 | 4.65e-02 |
387121 | 7.16e+00 | 4.83e-03 |
387122 | 1.11e+01 | 7.46e-03 |
387145 | 5.41e+00 | 3.65e-03 |
387212 | 1.59e+01 | 1.07e-02 |
387214 | 1.93e+01 | 1.30e-02 |
387225 | 9.97e+00 | 6.73e-03 |
387226 | 1.63e+01 | 1.10e-02 |
387231 | 3.17e+01 | 2.14e-02 |
387232 | 5.52e+00 | 3.72e-03 |
387233 | 7.28e+00 | 4.91e-03 |
387236 | 1.86e+01 | 1.25e-02 |
387241 | 3.18e+01 | 2.14e-02 |
387242 | 3.57e+01 | 2.41e-02 |
387244 | 1.65e+01 | 1.12e-02 |
387246 | 3.54e+01 | 2.39e-02 |
387252 | 8.57e+00 | 5.78e-03 |
387311 | 4.63e+02 | 3.13e-01 |
387312 | 6.08e+02 | 4.10e-01 |
387313 | 1.40e+03 | 9.48e-01 |
387314 | 2.17e+03 | 1.46e+00 |
387315 | 4.98e+02 | 3.36e-01 |
387316 | 1.74e+01 | 1.18e-02 |
387321 | 6.76e+02 | 4.56e-01 |
387322 | 2.94e+03 | 1.98e+00 |
387323 | 1.89e+03 | 1.28e+00 |
387324 | 5.44e+02 | 3.67e-01 |
387325 | 1.22e+02 | 8.21e-02 |
387326 | 1.99e+01 | 1.34e-02 |
387331 | 3.01e+03 | 2.03e+00 |
387332 | 3.59e+03 | 2.42e+00 |
387333 | 1.40e+03 | 9.44e-01 |
387334 | 1.13e+02 | 7.65e-02 |
387335 | 4.49e+01 | 3.03e-02 |
387336 | 2.90e+01 | 1.96e-02 |
387341 | 9.97e+02 | 6.73e-01 |
387342 | 6.60e+02 | 4.45e-01 |
387343 | 1.57e+01 | 1.06e-02 |
387344 | 1.14e+01 | 7.70e-03 |
387345 | 1.21e+01 | 8.16e-03 |
387351 | 1.16e+02 | 7.85e-02 |
387352 | 3.51e+01 | 2.37e-02 |
387353 | 1.53e+01 | 1.03e-02 |
387354 | 8.67e+00 | 5.85e-03 |
387355 | 4.21e+01 | 2.84e-02 |
387362 | 5.92e+01 | 3.99e-02 |
387363 | 4.20e+01 | 2.83e-02 |
387364 | 7.65e+00 | 5.16e-03 |
387365 | 2.27e+01 | 1.53e-02 |
387366 | 9.00e+00 | 6.07e-03 |
387411 | 3.70e+01 | 2.50e-02 |
387414 | 3.25e+01 | 2.19e-02 |
387415 | 2.86e+01 | 1.93e-02 |
387416 | 4.69e+01 | 3.17e-02 |
387422 | 2.01e+01 | 1.36e-02 |
387424 | 1.05e+00 | 7.08e-04 |
387425 | 4.71e+02 | 3.18e-01 |
387426 | 1.24e+03 | 8.37e-01 |
387432 | 4.86e+01 | 3.28e-02 |
387433 | 9.90e+00 | 6.68e-03 |
387434 | 4.37e+01 | 2.95e-02 |
387435 | 9.19e+02 | 6.20e-01 |
387436 | 2.37e+03 | 1.60e+00 |
387444 | 3.98e+00 | 2.68e-03 |
387445 | 1.68e+03 | 1.13e+00 |
387446 | 2.19e+03 | 1.48e+00 |
387452 | 6.38e+00 | 4.30e-03 |
387454 | 1.59e+01 | 1.07e-02 |
387455 | 1.50e+03 | 1.01e+00 |
387456 | 6.85e+02 | 4.62e-01 |
387461 | 1.63e+01 | 1.10e-02 |
387462 | 1.99e+01 | 1.34e-02 |
387463 | 7.79e+01 | 5.25e-02 |
387464 | 2.78e+02 | 1.88e-01 |
387465 | 1.27e+03 | 8.59e-01 |
387466 | 2.18e+02 | 1.47e-01 |
387655 | 1.69e+01 | 1.14e-02 |
396713 | 3.28e+01 | 2.21e-02 |
396814 | 2.99e+00 | 2.02e-03 |
396916 | 3.53e+01 | 2.38e-02 |
397211 | 6.00e+02 | 4.05e-01 |
397212 | 7.89e+02 | 5.33e-01 |
397213 | 1.60e+03 | 1.08e+00 |
397214 | 5.22e+02 | 3.52e-01 |
397221 | 2.32e+02 | 1.56e-01 |
397222 | 4.37e+02 | 2.95e-01 |
397223 | 8.26e+02 | 5.57e-01 |
397224 | 1.23e+02 | 8.32e-02 |
397225 | 3.91e+00 | 2.64e-03 |
397231 | 1.17e+03 | 7.88e-01 |
397232 | 1.26e+03 | 8.51e-01 |
397233 | 3.03e+01 | 2.04e-02 |
397234 | 1.87e+01 | 1.26e-02 |
397241 | 9.46e+02 | 6.38e-01 |
397242 | 2.75e+02 | 1.86e-01 |
397246 | 6.24e+00 | 4.21e-03 |
397251 | 2.00e+02 | 1.35e-01 |
397261 | 1.63e+00 | 1.10e-03 |
397262 | 8.45e+00 | 5.70e-03 |
397263 | 1.67e+01 | 1.12e-02 |
397265 | 1.66e+01 | 1.12e-02 |
397311 | 2.81e+01 | 1.89e-02 |
397312 | 7.61e+01 | 5.13e-02 |
397313 | 1.62e+02 | 1.09e-01 |
397314 | 3.97e+02 | 2.68e-01 |
397315 | 1.57e+03 | 1.06e+00 |
397316 | 5.63e+02 | 3.80e-01 |
397321 | 5.06e-01 | 3.41e-04 |
397322 | 8.88e+00 | 5.99e-03 |
397323 | 4.62e+01 | 3.12e-02 |
397324 | 2.76e+02 | 1.86e-01 |
397325 | 1.16e+03 | 7.85e-01 |
397326 | 6.81e+02 | 4.59e-01 |
397331 | 1.11e+01 | 7.51e-03 |
397332 | 2.68e+01 | 1.81e-02 |
397333 | 5.70e+01 | 3.84e-02 |
397334 | 1.95e+02 | 1.32e-01 |
397335 | 8.29e+02 | 5.60e-01 |
397336 | 5.32e+02 | 3.59e-01 |
397342 | 1.09e+02 | 7.35e-02 |
397343 | 2.15e+02 | 1.45e-01 |
397344 | 3.95e+02 | 2.66e-01 |
397345 | 4.82e+02 | 3.25e-01 |
397346 | 7.40e+02 | 4.99e-01 |
397351 | 6.55e+01 | 4.42e-02 |
397352 | 1.32e+02 | 8.92e-02 |
397353 | 3.64e+02 | 2.46e-01 |
397354 | 7.70e+02 | 5.19e-01 |
397355 | 1.06e+03 | 7.15e-01 |
397356 | 5.05e+02 | 3.41e-01 |
397361 | 1.01e+02 | 6.82e-02 |
397362 | 3.72e+02 | 2.51e-01 |
397363 | 8.38e+02 | 5.66e-01 |
397364 | 1.26e+03 | 8.51e-01 |
397365 | 8.46e+02 | 5.71e-01 |
397366 | 4.36e+02 | 2.94e-01 |
397426 | 4.79e+01 | 3.23e-02 |
397446 | 4.94e+00 | 3.34e-03 |
397456 | 1.45e+01 | 9.80e-03 |
397463 | 3.59e+01 | 2.42e-02 |
397464 | 6.05e+00 | 4.08e-03 |
397465 | 4.80e+01 | 3.24e-02 |
397466 | 3.33e+01 | 2.25e-02 |
406611 | 8.59e+02 | 5.80e-01 |
406612 | 6.23e+01 | 4.21e-02 |
406613 | 1.35e+01 | 9.11e-03 |
406621 | 6.35e+01 | 4.28e-02 |
406623 | 1.49e+01 | 1.00e-02 |
406626 | 2.00e+01 | 1.35e-02 |
406643 | 1.94e+01 | 1.31e-02 |
406652 | 1.63e+01 | 1.10e-02 |
406711 | 1.41e+02 | 9.54e-02 |
406712 | 3.19e+02 | 2.15e-01 |
406713 | 9.64e+02 | 6.50e-01 |
406714 | 1.18e+03 | 7.95e-01 |
406715 | 1.46e+03 | 9.85e-01 |
406716 | 9.26e+02 | 6.25e-01 |
406721 | 2.32e+02 | 1.57e-01 |
406722 | 7.86e+02 | 5.31e-01 |
406723 | 1.03e+03 | 6.94e-01 |
406724 | 4.24e+02 | 2.86e-01 |
406725 | 5.84e+01 | 3.94e-02 |
406731 | 1.70e+01 | 1.15e-02 |
406732 | 2.11e+02 | 1.42e-01 |
406733 | 2.40e+02 | 1.62e-01 |
406735 | 3.87e+01 | 2.61e-02 |
406742 | 1.79e+01 | 1.21e-02 |
406744 | 2.91e+01 | 1.97e-02 |
406764 | 2.00e+01 | 1.35e-02 |
406765 | 2.43e+01 | 1.64e-02 |
406766 | 4.15e+01 | 2.80e-02 |
406811 | 1.69e+03 | 1.14e+00 |
406812 | 3.16e+02 | 2.13e-01 |
406813 | 9.42e+01 | 6.36e-02 |
406814 | 1.28e+02 | 8.63e-02 |
406815 | 9.77e+01 | 6.59e-02 |
406816 | 1.67e+01 | 1.13e-02 |
406821 | 6.42e+02 | 4.33e-01 |
406822 | 3.25e+02 | 2.19e-01 |
406826 | 3.13e+02 | 2.11e-01 |
406831 | 3.03e+02 | 2.05e-01 |
406832 | 4.22e+02 | 2.84e-01 |
406833 | 2.43e+02 | 1.64e-01 |
406834 | 2.79e+01 | 1.88e-02 |
406835 | 6.42e+01 | 4.33e-02 |
406841 | 2.32e+02 | 1.57e-01 |
406852 | 1.22e+01 | 8.22e-03 |
406861 | 3.98e+01 | 2.68e-02 |
406862 | 3.01e+01 | 2.03e-02 |
406914 | 6.70e+01 | 4.52e-02 |
406915 | 2.69e+03 | 1.82e+00 |
406916 | 2.87e+03 | 1.94e+00 |
406923 | 1.89e+01 | 1.27e-02 |
406924 | 5.90e+01 | 3.98e-02 |
406925 | 1.86e+03 | 1.25e+00 |
406926 | 2.83e+03 | 1.91e+00 |
406931 | 8.16e+02 | 5.50e-01 |
406932 | 2.67e+03 | 1.80e+00 |
406933 | 1.35e+03 | 9.11e-01 |
406934 | 2.44e+01 | 1.65e-02 |
406935 | 9.46e+02 | 6.38e-01 |
406936 | 1.24e+03 | 8.40e-01 |
406941 | 1.16e+01 | 7.82e-03 |
406942 | 9.69e+02 | 6.54e-01 |
406943 | 6.91e+02 | 4.66e-01 |
406944 | 8.39e+02 | 5.66e-01 |
406945 | 5.89e+02 | 3.97e-01 |
406946 | 3.41e+01 | 2.30e-02 |
406952 | 4.35e+01 | 2.93e-02 |
406954 | 7.95e+01 | 5.36e-02 |
406955 | 1.23e+01 | 8.29e-03 |
406965 | 1.13e+02 | 7.60e-02 |
406966 | 2.73e+00 | 1.84e-03 |
407011 | 1.06e+01 | 7.12e-03 |
407012 | 1.05e+01 | 7.11e-03 |
407013 | 1.93e+00 | 1.30e-03 |
407015 | 5.64e-01 | 3.81e-04 |
407016 | 1.42e+01 | 9.60e-03 |
407021 | 4.16e+01 | 2.81e-02 |
407032 | 3.57e+01 | 2.41e-02 |
407035 | 1.74e+01 | 1.18e-02 |
407041 | 4.46e+01 | 3.01e-02 |
407045 | 8.37e+00 | 5.65e-03 |
407055 | 1.77e+01 | 1.20e-02 |
407111 | 1.71e+02 | 1.16e-01 |
407112 | 3.26e+02 | 2.20e-01 |
407113 | 2.59e+02 | 1.75e-01 |
407114 | 5.59e+01 | 3.77e-02 |
407115 | 3.56e+01 | 2.40e-02 |
407116 | 9.99e+00 | 6.74e-03 |
407121 | 5.13e+02 | 3.46e-01 |
407122 | 2.01e+02 | 1.36e-01 |
407123 | 9.82e-01 | 6.63e-04 |
407131 | 4.97e+02 | 3.36e-01 |
407132 | 6.23e+01 | 4.20e-02 |
407133 | 1.97e+01 | 1.33e-02 |
407134 | 1.15e+01 | 7.74e-03 |
407135 | 9.26e+00 | 6.25e-03 |
407141 | 2.99e+01 | 2.02e-02 |
407142 | 5.26e+01 | 3.55e-02 |
407151 | 7.55e+01 | 5.09e-02 |
407163 | 2.97e+01 | 2.00e-02 |
407215 | 3.84e+00 | 2.59e-03 |
407216 | 2.20e+01 | 1.48e-02 |
407221 | 3.00e+01 | 2.02e-02 |
407223 | 1.69e+00 | 1.14e-03 |
407224 | 2.87e+01 | 1.93e-02 |
407225 | 1.66e+02 | 1.12e-01 |
407226 | 4.45e+02 | 3.01e-01 |
407231 | 2.12e+01 | 1.43e-02 |
407232 | 3.72e+01 | 2.51e-02 |
407233 | 1.41e+01 | 9.50e-03 |
407234 | 2.59e+02 | 1.74e-01 |
407235 | 1.21e+02 | 8.13e-02 |
407236 | 6.02e+01 | 4.06e-02 |
407241 | 6.42e+02 | 4.33e-01 |
407242 | 1.04e+03 | 7.01e-01 |
407243 | 7.44e+02 | 5.02e-01 |
407244 | 5.75e+02 | 3.88e-01 |
407245 | 2.98e+02 | 2.01e-01 |
407246 | 8.99e+01 | 6.06e-02 |
407251 | 5.88e+02 | 3.97e-01 |
407252 | 3.74e+02 | 2.53e-01 |
407253 | 6.64e+02 | 4.48e-01 |
407254 | 7.63e+02 | 5.15e-01 |
407255 | 1.08e+02 | 7.31e-02 |
407256 | 1.15e+02 | 7.73e-02 |
407261 | 5.61e+02 | 3.79e-01 |
407262 | 8.11e+02 | 5.47e-01 |
407263 | 1.10e+03 | 7.44e-01 |
407264 | 2.59e+02 | 1.75e-01 |
407265 | 1.98e+01 | 1.34e-02 |
407266 | 4.61e+01 | 3.11e-02 |
407316 | 8.06e+00 | 5.44e-03 |
407325 | 1.50e+01 | 1.01e-02 |
407326 | 1.61e+01 | 1.08e-02 |
407333 | 2.46e+01 | 1.66e-02 |
407335 | 3.34e+01 | 2.26e-02 |
407336 | 3.25e+01 | 2.19e-02 |
407342 | 1.50e+01 | 1.01e-02 |
407343 | 5.35e+01 | 3.61e-02 |
407344 | 5.47e+01 | 3.69e-02 |
407345 | 3.08e+02 | 2.08e-01 |
407346 | 3.56e+02 | 2.40e-01 |
407352 | 7.36e+01 | 4.97e-02 |
407353 | 1.30e+02 | 8.78e-02 |
407354 | 4.25e+02 | 2.87e-01 |
407355 | 7.19e+02 | 4.85e-01 |
407356 | 6.41e+02 | 4.32e-01 |
407361 | 3.48e+01 | 2.35e-02 |
407362 | 8.22e+01 | 5.54e-02 |
407363 | 6.19e+02 | 4.18e-01 |
407364 | 9.53e+02 | 6.43e-01 |
407365 | 7.75e+02 | 5.23e-01 |
407366 | 7.43e+02 | 5.01e-01 |
407466 | 2.34e+00 | 1.58e-03 |
416641 | 8.76e+01 | 5.91e-02 |
416642 | 3.20e+02 | 2.16e-01 |
416643 | 4.47e+02 | 3.02e-01 |
416644 | 1.24e+01 | 8.38e-03 |
416651 | 2.45e+02 | 1.65e-01 |
416652 | 4.46e+02 | 3.01e-01 |
416653 | 7.28e+02 | 4.91e-01 |
416654 | 2.03e+02 | 1.37e-01 |
416661 | 8.02e+02 | 5.41e-01 |
416662 | 1.29e+03 | 8.73e-01 |
416663 | 2.54e+02 | 1.71e-01 |
416664 | 8.08e+00 | 5.45e-03 |
416665 | 3.11e+01 | 2.10e-02 |
416711 | 3.13e+02 | 2.11e-01 |
416712 | 1.26e+02 | 8.52e-02 |
416713 | 5.95e+02 | 4.01e-01 |
416714 | 7.49e+02 | 5.05e-01 |
416715 | 6.95e+00 | 4.69e-03 |
416721 | 5.67e+01 | 3.83e-02 |
416722 | 1.74e+01 | 1.17e-02 |
416724 | 6.52e+00 | 4.40e-03 |
416742 | 1.92e+01 | 1.29e-02 |
416743 | 2.61e+01 | 1.76e-02 |
416744 | 3.16e+01 | 2.13e-02 |
416746 | 5.36e+00 | 3.61e-03 |
416755 | 3.49e+01 | 2.36e-02 |
416756 | 1.02e+02 | 6.85e-02 |
416762 | 3.01e+01 | 2.03e-02 |
416764 | 1.66e+01 | 1.12e-02 |
416765 | 2.55e+02 | 1.72e-01 |
416766 | 1.83e+02 | 1.23e-01 |
416816 | 2.73e+02 | 1.84e-01 |
416824 | 5.95e+01 | 4.01e-02 |
416825 | 9.09e+01 | 6.14e-02 |
416826 | 1.49e+02 | 1.01e-01 |
416833 | 7.84e+01 | 5.29e-02 |
416834 | 8.48e+01 | 5.72e-02 |
416835 | 2.18e+01 | 1.47e-02 |
416841 | 2.18e+01 | 1.47e-02 |
416842 | 4.14e+02 | 2.79e-01 |
416843 | 7.78e+02 | 5.25e-01 |
416844 | 3.51e+02 | 2.37e-01 |
416845 | 1.24e+02 | 8.39e-02 |
416851 | 6.61e+02 | 4.46e-01 |
416852 | 1.09e+03 | 7.37e-01 |
416853 | 4.60e+02 | 3.10e-01 |
416854 | 7.90e+01 | 5.33e-02 |
416856 | 1.89e+01 | 1.27e-02 |
416861 | 1.43e+03 | 9.64e-01 |
416862 | 1.76e+03 | 1.19e+00 |
416863 | 2.54e+02 | 1.71e-01 |
416864 | 2.86e+01 | 1.93e-02 |
416865 | 4.68e+01 | 3.16e-02 |
416866 | 2.15e+01 | 1.45e-02 |
416912 | 2.66e+01 | 1.79e-02 |
416915 | 1.12e+01 | 7.53e-03 |
416916 | 1.80e+01 | 1.21e-02 |
416922 | 5.78e+01 | 3.90e-02 |
416924 | 9.16e+00 | 6.18e-03 |
416931 | 1.28e+01 | 8.62e-03 |
416932 | 2.64e+02 | 1.78e-01 |
416933 | 3.91e+02 | 2.64e-01 |
416934 | 2.05e+02 | 1.38e-01 |
416935 | 3.00e+01 | 2.02e-02 |
416942 | 7.71e+00 | 5.20e-03 |
416943 | 9.84e+01 | 6.64e-02 |
416944 | 1.24e+03 | 8.35e-01 |
416945 | 3.67e+02 | 2.48e-01 |
416952 | 2.82e+00 | 1.90e-03 |
416953 | 3.47e+01 | 2.34e-02 |
416954 | 4.75e+02 | 3.20e-01 |
416955 | 9.68e+02 | 6.53e-01 |
416956 | 2.12e+02 | 1.43e-01 |
416961 | 1.85e+01 | 1.25e-02 |
416962 | 5.94e+00 | 4.01e-03 |
416963 | 3.54e+01 | 2.39e-02 |
416964 | 3.15e+02 | 2.12e-01 |
416965 | 3.76e+03 | 2.53e+00 |
416966 | 1.95e+03 | 1.31e+00 |
417031 | 1.45e+02 | 9.79e-02 |
417042 | 1.80e+01 | 1.21e-02 |
417046 | 4.57e+01 | 3.08e-02 |
417051 | 1.95e+01 | 1.31e-02 |
417055 | 3.62e+01 | 2.44e-02 |
417061 | 8.01e+01 | 5.40e-02 |
417062 | 3.36e+01 | 2.26e-02 |
417145 | 8.00e-01 | 5.40e-04 |
417146 | 1.11e+01 | 7.49e-03 |
417154 | 4.09e+00 | 2.76e-03 |
417161 | 5.51e-01 | 3.72e-04 |
417162 | 1.13e+00 | 7.65e-04 |
417163 | 1.56e+01 | 1.05e-02 |
417164 | 8.34e+01 | 5.63e-02 |
417165 | 6.94e+00 | 4.68e-03 |
417166 | 5.86e-01 | 3.95e-04 |
417262 | 2.84e+01 | 1.92e-02 |
417366 | 5.19e+00 | 3.50e-03 |
426752 | 1.43e+01 | 9.66e-03 |
426762 | 4.11e+01 | 2.78e-02 |
426763 | 4.16e+02 | 2.81e-01 |
426764 | 1.41e+03 | 9.52e-01 |
426765 | 1.36e+02 | 9.14e-02 |
426915 | 1.67e+01 | 1.13e-02 |
426964 | 5.24e+01 | 3.54e-02 |
427034 | 1.68e+00 | 1.13e-03 |
427043 | 3.31e+01 | 2.23e-02 |
427044 | 1.40e+02 | 9.45e-02 |
427045 | 1.63e+02 | 1.10e-01 |
427056 | 5.01e+01 | 3.38e-02 |
427065 | 1.61e+02 | 1.09e-01 |
427066 | 5.00e+01 | 3.37e-02 |
Average trip length for Access Area and Days at Sea fleets combined
zone_out <-
zone_summary(scallopMainDataTable, project = proj,
spat = scallopTenMNSQRSpatTable,
zone.dat = "ZONE_ID",
zone.spat = "TEN_ID",
count = FALSE,
var = "TRIP_LENGTH", fun = "mean",
breaks = seq(2, 16, 2),
output = "tab_plot", na.rm = TRUE)
#> A line object has been specified, but lines is not in the mode
#> Adding lines to the mode...
zone_out$plot
zone_out$table %>%
pretty_lab(cols = "TRIP_LENGTH", type = "decimal") %>%
pretty_tab_sb(width = "40%")
ZONE_ID | TRIP_LENGTH |
---|---|
0 | 5.99 |
347231 | 10.17 |
347336 | 4.88 |
347415 | 7.44 |
347535 | 3.58 |
357232 | 3.28 |
357313 | 7.17 |
357322 | 8.70 |
357325 | 3.82 |
357346 | 5.02 |
357445 | 6.08 |
357516 | 8.54 |
367216 | 1.88 |
367322 | 8.80 |
367444 | 16.08 |
367536 | 9.27 |
367614 | 6.91 |
377021 | 7.25 |
377143 | 3.00 |
377214 | 7.79 |
377224 | 11.04 |
377231 | 13.71 |
377311 | 7.00 |
377312 | 6.60 |
377321 | 7.71 |
377322 | 4.92 |
377323 | 5.31 |
377325 | 9.87 |
377332 | 10.84 |
377335 | 9.20 |
377346 | 7.03 |
377364 | 6.95 |
377366 | 12.97 |
377411 | 4.33 |
377413 | 6.91 |
377414 | 7.88 |
377415 | 7.84 |
377416 | 9.86 |
377422 | 6.11 |
377423 | 6.58 |
377424 | 6.75 |
377425 | 7.03 |
377426 | 10.88 |
377432 | 7.46 |
377433 | 6.86 |
377434 | 8.20 |
377435 | 8.19 |
377442 | 6.94 |
377443 | 6.04 |
377444 | 9.77 |
377445 | 10.17 |
377452 | 8.94 |
377453 | 8.51 |
377464 | 6.06 |
377465 | 11.80 |
386916 | 9.25 |
387025 | 9.42 |
387032 | 8.35 |
387121 | 4.59 |
387122 | 4.56 |
387145 | 2.66 |
387212 | 8.47 |
387214 | 10.54 |
387225 | 6.15 |
387226 | 7.39 |
387231 | 12.48 |
387232 | 5.61 |
387233 | 2.71 |
387236 | 6.17 |
387241 | 6.31 |
387242 | 4.33 |
387244 | 9.62 |
387246 | 7.31 |
387252 | 4.15 |
387311 | 7.33 |
387312 | 7.47 |
387313 | 6.31 |
387314 | 6.59 |
387315 | 7.54 |
387316 | 8.54 |
387321 | 7.15 |
387322 | 7.11 |
387323 | 6.58 |
387324 | 8.16 |
387325 | 8.81 |
387326 | 5.42 |
387331 | 6.48 |
387332 | 6.83 |
387333 | 7.33 |
387334 | 6.94 |
387335 | 5.16 |
387336 | 3.01 |
387341 | 6.91 |
387342 | 7.56 |
387343 | 8.20 |
387344 | 8.95 |
387345 | 6.87 |
387351 | 8.21 |
387352 | 6.45 |
387353 | 13.61 |
387354 | 5.40 |
387355 | 10.71 |
387362 | 7.64 |
387363 | 8.64 |
387364 | 2.84 |
387365 | 6.53 |
387366 | 11.90 |
387411 | 6.98 |
387414 | 8.12 |
387415 | 11.38 |
387416 | 3.03 |
387422 | 4.11 |
387424 | 0.77 |
387425 | 5.32 |
387426 | 5.68 |
387432 | 6.47 |
387433 | 4.71 |
387434 | 5.51 |
387435 | 7.02 |
387436 | 5.76 |
387444 | 1.64 |
387445 | 6.68 |
387446 | 6.71 |
387452 | 4.87 |
387454 | 5.24 |
387455 | 7.02 |
387456 | 6.66 |
387461 | 13.20 |
387462 | 6.12 |
387463 | 8.86 |
387464 | 7.73 |
387465 | 6.72 |
387466 | 6.41 |
387655 | 6.46 |
396713 | 14.35 |
396814 | 7.58 |
396916 | 5.02 |
397211 | 8.62 |
397212 | 8.98 |
397213 | 8.74 |
397214 | 8.97 |
397221 | 6.79 |
397222 | 9.51 |
397223 | 9.31 |
397224 | 9.83 |
397225 | 5.02 |
397231 | 8.29 |
397232 | 8.02 |
397233 | 7.34 |
397234 | 7.16 |
397241 | 7.02 |
397242 | 6.22 |
397246 | 6.35 |
397251 | 8.65 |
397261 | 4.50 |
397262 | 7.27 |
397263 | 7.27 |
397265 | 6.49 |
397311 | 10.23 |
397312 | 6.98 |
397313 | 7.19 |
397314 | 6.37 |
397315 | 8.48 |
397316 | 9.19 |
397321 | 1.96 |
397322 | 9.44 |
397323 | 13.38 |
397324 | 7.99 |
397325 | 8.76 |
397326 | 8.86 |
397331 | 15.53 |
397332 | 9.08 |
397333 | 4.26 |
397334 | 7.87 |
397335 | 9.11 |
397336 | 8.22 |
397342 | 7.39 |
397343 | 7.16 |
397344 | 7.27 |
397345 | 7.60 |
397346 | 7.95 |
397351 | 12.31 |
397352 | 7.22 |
397353 | 8.51 |
397354 | 8.01 |
397355 | 8.02 |
397356 | 7.63 |
397361 | 5.17 |
397362 | 7.18 |
397363 | 7.07 |
397364 | 6.52 |
397365 | 7.13 |
397366 | 9.01 |
397426 | 8.26 |
397446 | 9.22 |
397456 | 6.35 |
397463 | 12.66 |
397464 | 4.62 |
397465 | 6.79 |
397466 | 9.14 |
406611 | 11.41 |
406612 | 11.53 |
406613 | 5.45 |
406621 | 13.34 |
406623 | 12.44 |
406626 | 11.23 |
406643 | 7.59 |
406652 | 9.04 |
406711 | 9.94 |
406712 | 9.78 |
406713 | 10.72 |
406714 | 11.37 |
406715 | 11.21 |
406716 | 10.86 |
406721 | 10.68 |
406722 | 11.07 |
406723 | 11.05 |
406724 | 10.70 |
406725 | 7.86 |
406731 | 14.58 |
406732 | 9.10 |
406733 | 9.45 |
406735 | 5.77 |
406742 | 5.07 |
406744 | 11.08 |
406764 | 8.00 |
406765 | 7.49 |
406766 | 12.79 |
406811 | 8.84 |
406812 | 7.54 |
406813 | 9.28 |
406814 | 11.22 |
406815 | 11.85 |
406816 | 5.19 |
406821 | 8.96 |
406822 | 10.31 |
406826 | 11.18 |
406831 | 9.65 |
406832 | 12.37 |
406833 | 11.51 |
406834 | 15.58 |
406835 | 7.09 |
406841 | 8.65 |
406852 | 5.29 |
406861 | 6.15 |
406862 | 10.33 |
406914 | 8.27 |
406915 | 8.18 |
406916 | 9.42 |
406923 | 9.10 |
406924 | 7.47 |
406925 | 5.64 |
406926 | 5.42 |
406931 | 5.98 |
406932 | 6.66 |
406933 | 6.33 |
406934 | 4.08 |
406935 | 5.90 |
406936 | 5.85 |
406941 | 3.62 |
406942 | 6.82 |
406943 | 6.44 |
406944 | 6.16 |
406945 | 5.94 |
406946 | 6.78 |
406952 | 7.92 |
406954 | 6.31 |
406955 | 5.15 |
406965 | 6.38 |
406966 | 3.62 |
407011 | 3.92 |
407012 | 4.42 |
407013 | 2.00 |
407015 | 2.01 |
407016 | 11.49 |
407021 | 7.83 |
407032 | 5.74 |
407035 | 7.88 |
407041 | 8.92 |
407045 | 7.42 |
407055 | 4.83 |
407111 | 6.25 |
407112 | 6.99 |
407113 | 6.01 |
407114 | 5.31 |
407115 | 4.10 |
407116 | 11.13 |
407121 | 8.42 |
407122 | 7.54 |
407123 | 2.43 |
407131 | 8.57 |
407132 | 7.16 |
407133 | 7.96 |
407134 | 9.84 |
407135 | 6.36 |
407141 | 5.22 |
407142 | 14.05 |
407151 | 9.69 |
407163 | 9.27 |
407215 | 3.21 |
407216 | 5.01 |
407221 | 7.91 |
407223 | 1.90 |
407224 | 10.96 |
407225 | 7.73 |
407226 | 8.87 |
407231 | 11.58 |
407232 | 7.87 |
407233 | 8.54 |
407234 | 7.99 |
407235 | 8.53 |
407236 | 8.38 |
407241 | 8.96 |
407242 | 8.46 |
407243 | 8.45 |
407244 | 8.23 |
407245 | 7.89 |
407246 | 6.39 |
407251 | 8.99 |
407252 | 7.92 |
407253 | 8.77 |
407254 | 8.90 |
407255 | 9.43 |
407256 | 7.91 |
407261 | 8.78 |
407262 | 8.37 |
407263 | 9.74 |
407264 | 9.55 |
407265 | 9.69 |
407266 | 7.17 |
407316 | 2.92 |
407325 | 13.62 |
407326 | 10.60 |
407333 | 11.70 |
407335 | 7.40 |
407336 | 7.55 |
407342 | 6.33 |
407343 | 6.71 |
407344 | 9.20 |
407345 | 7.37 |
407346 | 8.16 |
407352 | 6.81 |
407353 | 8.52 |
407354 | 8.13 |
407355 | 8.61 |
407356 | 8.41 |
407361 | 8.19 |
407362 | 7.82 |
407363 | 8.73 |
407364 | 7.75 |
407365 | 7.67 |
407366 | 8.65 |
407466 | 3.33 |
416641 | 9.35 |
416642 | 7.51 |
416643 | 7.28 |
416644 | 7.29 |
416651 | 7.67 |
416652 | 8.44 |
416653 | 7.45 |
416654 | 7.91 |
416661 | 7.62 |
416662 | 7.76 |
416663 | 8.57 |
416664 | 5.61 |
416665 | 15.02 |
416711 | 10.41 |
416712 | 11.60 |
416713 | 10.96 |
416714 | 10.84 |
416715 | 5.83 |
416721 | 9.33 |
416722 | 7.99 |
416724 | 5.46 |
416742 | 8.23 |
416743 | 10.08 |
416744 | 8.44 |
416746 | 3.88 |
416755 | 5.43 |
416756 | 9.16 |
416762 | 13.69 |
416764 | 14.26 |
416765 | 6.88 |
416766 | 7.68 |
416816 | 10.03 |
416824 | 12.46 |
416825 | 8.27 |
416826 | 9.99 |
416833 | 12.95 |
416834 | 7.49 |
416835 | 10.08 |
416841 | 3.94 |
416842 | 5.77 |
416843 | 6.86 |
416844 | 8.91 |
416845 | 9.51 |
416851 | 6.27 |
416852 | 6.57 |
416853 | 7.10 |
416854 | 6.52 |
416856 | 8.08 |
416861 | 6.22 |
416862 | 6.97 |
416863 | 7.11 |
416864 | 3.62 |
416865 | 11.89 |
416866 | 10.41 |
416912 | 8.05 |
416915 | 5.44 |
416916 | 8.54 |
416922 | 10.04 |
416924 | 5.71 |
416931 | 4.54 |
416932 | 10.24 |
416933 | 8.72 |
416934 | 6.00 |
416935 | 8.38 |
416942 | 5.17 |
416943 | 6.85 |
416944 | 6.38 |
416945 | 7.29 |
416952 | 2.13 |
416953 | 5.45 |
416954 | 8.01 |
416955 | 7.68 |
416956 | 5.53 |
416961 | 5.16 |
416962 | 4.06 |
416963 | 6.82 |
416964 | 8.21 |
416965 | 7.16 |
416966 | 6.69 |
417031 | 7.52 |
417042 | 3.35 |
417046 | 13.08 |
417051 | 10.53 |
417055 | 12.42 |
417061 | 8.24 |
417062 | 6.70 |
417145 | 1.71 |
417146 | 5.57 |
417154 | 4.40 |
417161 | 2.20 |
417162 | 5.42 |
417163 | 7.96 |
417164 | 6.37 |
417165 | 4.93 |
417166 | 2.97 |
417262 | 9.28 |
417366 | 3.75 |
426752 | 8.85 |
426762 | 13.01 |
426763 | 10.55 |
426764 | 10.13 |
426765 | 11.32 |
426915 | 8.18 |
426964 | 13.12 |
427034 | 2.48 |
427043 | 10.88 |
427044 | 6.34 |
427045 | 6.16 |
427056 | 5.50 |
427065 | 10.49 |
427066 | 9.98 |
Average CPUE for Access Area and Days at Sea fleets combined
zone_out <-
scallopMainDataTable %>%
filter(CPUE_p >= .025 & CPUE_p <= .975) %>%
zone_summary(project = proj,
spat = scallopTenMNSQRSpatTable,
zone.dat = "ZONE_ID",
zone.spat = "TEN_ID",
count = FALSE,
var = "CPUE", fun = "mean",
na.rm = TRUE, output = "tab_plot")
#> A line object has been specified, but lines is not in the mode
#> Adding lines to the mode...
zone_out$plot
ZONE_ID | CPUE |
---|---|
0 | 1.54 |
347231 | 0.4 |
347336 | 1.45 |
347415 | 0.69 |
347535 | 2.23 |
357313 | 2.7 |
357322 | 1.87 |
357325 | 2.21 |
357346 | 1.71 |
357445 | 2.96 |
357516 | 1.59 |
367322 | 1.98 |
367444 | 1.02 |
367536 | 1.91 |
367614 | 1.9 |
377021 | 2.63 |
377143 | 0.42 |
377214 | 0.89 |
377224 | 1.68 |
377231 | 1.37 |
377311 | 2.19 |
377312 | 1.7 |
377321 | 1.78 |
377322 | 1.18 |
377323 | 1.31 |
377325 | 2.06 |
377332 | 1.39 |
377335 | 1.67 |
377346 | 2.64 |
377364 | 2.64 |
377366 | 0.98 |
377413 | 2.01 |
377414 | 1.98 |
377415 | 1.63 |
377416 | 1.24 |
377422 | 1.97 |
377423 | 1.87 |
377424 | 1.72 |
377425 | 1.51 |
377426 | 1.7 |
377432 | 2.1 |
377433 | 1.93 |
377434 | 1.53 |
377435 | 1.72 |
377442 | 2.06 |
377443 | 1.87 |
377444 | 1.33 |
377445 | 1.94 |
377452 | 1.83 |
377453 | 1.75 |
377464 | 1.38 |
377465 | 0.34 |
386916 | 1.77 |
387025 | 2.25 |
387032 | 2.1 |
387121 | 1.56 |
387122 | 2.42 |
387145 | 2.04 |
387212 | 1.87 |
387214 | 1.83 |
387225 | 1.62 |
387226 | 2.21 |
387231 | 2.54 |
387232 | 0.98 |
387233 | 2.69 |
387236 | 3.01 |
387241 | 2.52 |
387242 | 2.7 |
387244 | 1.72 |
387246 | 2.42 |
387252 | 2.07 |
387311 | 1.68 |
387312 | 1.65 |
387313 | 1.76 |
387314 | 1.63 |
387315 | 1.43 |
387316 | 1.02 |
387321 | 2.06 |
387322 | 2.06 |
387323 | 1.97 |
387324 | 1.32 |
387325 | 1.47 |
387326 | 2.36 |
387331 | 2.25 |
387332 | 2.05 |
387333 | 1.78 |
387334 | 1.39 |
387335 | 1.48 |
387336 | 1.73 |
387341 | 1.85 |
387342 | 1.69 |
387343 | 1.91 |
387344 | 1.28 |
387345 | 1.76 |
387351 | 1.66 |
387352 | 1.78 |
387353 | 1.12 |
387354 | 0.66 |
387355 | 1.92 |
387362 | 1.95 |
387363 | 2.09 |
387364 | 2.7 |
387365 | 1.66 |
387366 | 0.76 |
387411 | 1.7 |
387414 | 2.01 |
387415 | 1.38 |
387416 | 0.63 |
387422 | 2.2 |
387424 | 1.36 |
387425 | 2.01 |
387426 | 2.11 |
387432 | 2.1 |
387433 | 2.1 |
387434 | 1.42 |
387435 | 2.01 |
387436 | 2.36 |
387444 | 2.01 |
387445 | 2.03 |
387446 | 2.18 |
387452 | 0.51 |
387454 | 1.54 |
387455 | 1.99 |
387456 | 1.54 |
387461 | 1.23 |
387462 | 1.38 |
387463 | 1.67 |
387464 | 1.91 |
387465 | 1.68 |
387466 | 1.37 |
387655 | 2.62 |
396713 | 2.28 |
396814 | 0.39 |
396916 | 3.54 |
397211 | 1.83 |
397212 | 1.87 |
397213 | 1.89 |
397214 | 1.53 |
397221 | 1.96 |
397222 | 1.82 |
397223 | 2.06 |
397224 | 1.71 |
397225 | 0.78 |
397231 | 1.75 |
397232 | 1.62 |
397233 | 1.91 |
397234 | 1.36 |
397241 | 1.86 |
397242 | 1.49 |
397246 | 0.98 |
397251 | 1.35 |
397261 | 0.36 |
397262 | 1.16 |
397263 | 2.29 |
397265 | 2.56 |
397311 | 1.34 |
397312 | 1.44 |
397313 | 1.44 |
397314 | 1.58 |
397315 | 1.85 |
397316 | 2.06 |
397322 | 0.48 |
397323 | 1.72 |
397324 | 1.79 |
397325 | 1.95 |
397326 | 2.08 |
397331 | 0.72 |
397332 | 1.54 |
397333 | 1.18 |
397334 | 1.64 |
397335 | 1.92 |
397336 | 1.66 |
397342 | 1.8 |
397343 | 1.67 |
397344 | 1.63 |
397345 | 1.6 |
397346 | 1.56 |
397351 | 1.8 |
397352 | 1.44 |
397353 | 1.7 |
397354 | 1.84 |
397355 | 1.78 |
397356 | 1.27 |
397361 | 1.34 |
397362 | 1.39 |
397363 | 1.53 |
397364 | 1.67 |
397365 | 1.47 |
397366 | 1.33 |
397426 | 2.6 |
397446 | 0.54 |
397456 | 1.43 |
397463 | 2.84 |
397464 | 1.31 |
397465 | 1.84 |
397466 | 1.83 |
406611 | 2.09 |
406612 | 1.81 |
406613 | 1.15 |
406621 | 2.4 |
406623 | 1.19 |
406626 | 1.78 |
406643 | 2.56 |
406652 | 1.8 |
406711 | 1.87 |
406712 | 1.54 |
406713 | 2.13 |
406714 | 2.2 |
406715 | 2.37 |
406716 | 2.5 |
406721 | 2.2 |
406722 | 2.13 |
406723 | 2.21 |
406724 | 1.75 |
406725 | 2.49 |
406731 | 1.17 |
406732 | 1.94 |
406733 | 1.57 |
406735 | 3.41 |
406742 | 2.15 |
406744 | 2.63 |
406764 | 2.5 |
406765 | 3.24 |
406766 | 3.25 |
406811 | 2.21 |
406812 | 2.33 |
406813 | 1.7 |
406814 | 2.29 |
406815 | 1.85 |
406816 | 3.22 |
406821 | 2 |
406822 | 2.04 |
406826 | 2.12 |
406831 | 1.74 |
406832 | 2.12 |
406833 | 1.86 |
406834 | 1.79 |
406835 | 2.05 |
406841 | 2.31 |
406852 | 2.3 |
406861 | 2.15 |
406862 | 1.5 |
406914 | 1.84 |
406915 | 2 |
406916 | 2.15 |
406923 | 2.08 |
406924 | 1.65 |
406925 | 2.16 |
406926 | 2.35 |
406931 | 2.18 |
406932 | 2.09 |
406933 | 2.18 |
406934 | 1.89 |
406935 | 2.12 |
406936 | 2.56 |
406941 | 1.38 |
406942 | 1.85 |
406943 | 2.36 |
406944 | 2.17 |
406945 | 2.45 |
406946 | 1.9 |
406952 | 1.87 |
406954 | 2.54 |
406955 | 1.14 |
406965 | 1.57 |
406966 | 0.75 |
407011 | 2.69 |
407012 | 2.39 |
407013 | 0.97 |
407016 | 1.24 |
407021 | 2.66 |
407032 | 3.13 |
407035 | 2.21 |
407041 | 2.45 |
407045 | 1.13 |
407055 | 1 |
407111 | 2.23 |
407112 | 1.51 |
407113 | 1.44 |
407114 | 1.17 |
407115 | 0.9 |
407116 | 0.9 |
407121 | 1.97 |
407122 | 1.96 |
407123 | 0.4 |
407131 | 2 |
407132 | 2.02 |
407133 | 2.48 |
407134 | 1.16 |
407135 | 1.46 |
407141 | 1.37 |
407142 | 1.87 |
407151 | 2.46 |
407163 | 3.2 |
407215 | 1.2 |
407216 | 1.68 |
407221 | 1.71 |
407223 | 0.89 |
407224 | 2.61 |
407225 | 2.01 |
407226 | 2.29 |
407231 | 1.83 |
407232 | 1.17 |
407233 | 1.65 |
407234 | 2.1 |
407235 | 1.88 |
407236 | 1.28 |
407241 | 2.1 |
407242 | 2.07 |
407243 | 2.12 |
407244 | 1.95 |
407245 | 1.74 |
407246 | 1.6 |
407251 | 2.14 |
407252 | 1.79 |
407253 | 1.9 |
407254 | 2.05 |
407255 | 1.29 |
407256 | 1.56 |
407261 | 1.9 |
407262 | 1.76 |
407263 | 2.09 |
407264 | 1.72 |
407265 | 0.93 |
407266 | 2.13 |
407316 | 1.46 |
407325 | 1.1 |
407326 | 1.51 |
407333 | 2.1 |
407335 | 2.21 |
407336 | 2.14 |
407342 | 2.36 |
407343 | 1.91 |
407344 | 1.93 |
407345 | 2.1 |
407346 | 2.13 |
407352 | 2.39 |
407353 | 2.26 |
407354 | 2.1 |
407355 | 1.99 |
407356 | 2.05 |
407361 | 2.45 |
407362 | 1.99 |
407363 | 2.1 |
407364 | 2.07 |
407365 | 1.84 |
407366 | 2.12 |
407466 | 0.7 |
416641 | 2 |
416642 | 1.94 |
416643 | 1.99 |
416644 | 1.7 |
416651 | 1.53 |
416652 | 2.07 |
416653 | 1.95 |
416654 | 1.53 |
416661 | 1.93 |
416662 | 2.12 |
416663 | 1.9 |
416664 | 1.44 |
416665 | 2.07 |
416711 | 2.32 |
416712 | 2.21 |
416713 | 2.05 |
416714 | 1.96 |
416715 | 1.19 |
416721 | 1.36 |
416722 | 1.32 |
416724 | 1.19 |
416742 | 2.33 |
416743 | 2.59 |
416744 | 1.96 |
416746 | 1.38 |
416755 | 3.25 |
416756 | 1.73 |
416762 | 2.2 |
416764 | 1.17 |
416765 | 2.29 |
416766 | 2.31 |
416816 | 1.84 |
416824 | 2.39 |
416825 | 2.13 |
416826 | 2.49 |
416833 | 3.02 |
416834 | 1.65 |
416835 | 2.16 |
416841 | 1.95 |
416842 | 2.29 |
416843 | 2.3 |
416844 | 1.71 |
416845 | 2.07 |
416851 | 2.32 |
416852 | 2.2 |
416853 | 2.09 |
416854 | 3.02 |
416856 | 2.33 |
416861 | 2.09 |
416862 | 2.12 |
416863 | 1.92 |
416864 | 1.95 |
416866 | 2.06 |
416912 | 1.54 |
416915 | 2.05 |
416916 | 2.1 |
416922 | 2.83 |
416924 | 1.61 |
416931 | 2.81 |
416932 | 1.95 |
416933 | 1.97 |
416934 | 1.63 |
416935 | 1.79 |
416942 | 1.49 |
416943 | 1.89 |
416944 | 2.44 |
416945 | 2.09 |
416952 | 1.32 |
416953 | 3.18 |
416954 | 2.01 |
416955 | 1.92 |
416956 | 2.16 |
416961 | 3.58 |
416962 | 1.46 |
416963 | 2.62 |
416964 | 2.31 |
416965 | 1.86 |
416966 | 2.07 |
417031 | 1.72 |
417042 | 1.68 |
417046 | 3.49 |
417051 | 1.85 |
417055 | 1.47 |
417061 | 2.51 |
417062 | 1.63 |
417145 | 0.47 |
417146 | 1.99 |
417154 | 0.93 |
417163 | 1.95 |
417164 | 1.68 |
417165 | 1.41 |
417262 | 1.69 |
417366 | 1.38 |
426752 | 1.62 |
426762 | 1.58 |
426763 | 2.01 |
426764 | 2.24 |
426765 | 2.4 |
426915 | 2.04 |
427034 | 0.68 |
427043 | 3.04 |
427044 | 2.16 |
427045 | 2.67 |
427056 | 1.58 |
427065 | 1.58 |
427066 | 1.65 |
Average VPUE for Access Area and Days at Sea fleets combined
zone_out <-
scallopMainDataTable %>%
filter(VPUE_p >= .025 & VPUE_p <= .975) %>%
zone_summary(project = proj,
spat = scallopTenMNSQRSpatTable,
zone.dat = "ZONE_ID",
zone.spat = "TEN_ID",
count = FALSE,
var = "VPUE", fun = "mean",
breaks = seq(5e3, 3.5e4, 5e3),
na.rm = TRUE, output = "tab_plot")
#> A line object has been specified, but lines is not in the mode
#> Adding lines to the mode...
zone_out$plot
ZONE_ID | VPUE |
---|---|
0 | 20,066.88 |
347231 | 5,233.3 |
347336 | 9,536.37 |
347415 | 6,245 |
347535 | 13,387.7 |
357313 | 29,074.82 |
357322 | 18,211 |
357325 | 21,177.49 |
357346 | 17,164.08 |
357445 | 20,436.98 |
357516 | 9,512.45 |
367322 | 17,407.07 |
367444 | 9,199.07 |
367536 | 14,360.14 |
367614 | 16,568.37 |
377021 | 15,220.15 |
377143 | 2,972.54 |
377214 | 5,317.38 |
377224 | 16,476.79 |
377231 | 8,170.41 |
377311 | 26,822.81 |
377312 | 13,127.43 |
377321 | 13,434.37 |
377322 | 7,041.88 |
377323 | 11,581.27 |
377325 | 12,130.84 |
377332 | 16,060.76 |
377335 | 11,417.53 |
377346 | 24,630.52 |
377364 | 25,996.45 |
377366 | 6,541.51 |
377411 | 3,223.53 |
377413 | 15,582.86 |
377414 | 18,207.06 |
377415 | 14,184.33 |
377416 | 10,497.06 |
377422 | 21,187.48 |
377423 | 18,814.16 |
377424 | 16,907.38 |
377425 | 12,962.48 |
377426 | 14,369.52 |
377432 | 17,715.69 |
377433 | 16,459.05 |
377434 | 14,528.69 |
377435 | 12,618 |
377442 | 17,520.48 |
377443 | 17,868 |
377444 | 9,820.63 |
377445 | 18,938.53 |
377452 | 15,840.37 |
377453 | 15,715.07 |
377464 | 8,308.95 |
377465 | 3,258.77 |
386916 | 19,522.87 |
387025 | 11,269.26 |
387032 | 15,592.71 |
387121 | 12,751.43 |
387122 | 19,119.7 |
387145 | 13,241.61 |
387212 | 14,723.55 |
387214 | 17,120.83 |
387225 | 17,248.08 |
387226 | 16,198.11 |
387231 | 16,100.56 |
387232 | 7,865.37 |
387233 | 17,077.27 |
387236 | 25,007.26 |
387241 | 32,325.13 |
387242 | 27,450.17 |
387244 | 14,405.85 |
387246 | 29,200.35 |
387252 | 17,578.02 |
387311 | 14,767.65 |
387312 | 13,616.01 |
387313 | 16,801.8 |
387314 | 15,197.02 |
387315 | 15,279.03 |
387316 | 8,920.23 |
387321 | 16,653.18 |
387322 | 17,106.76 |
387323 | 16,931.58 |
387324 | 12,421.16 |
387325 | 12,167.14 |
387326 | 21,491.37 |
387331 | 18,597.51 |
387332 | 18,086.73 |
387333 | 14,989.19 |
387334 | 13,271.7 |
387335 | 11,897.8 |
387336 | 14,605.61 |
387341 | 17,116.38 |
387342 | 16,552.53 |
387343 | 24,829.31 |
387344 | 7,908.01 |
387345 | 9,678.65 |
387351 | 10,759.52 |
387352 | 11,899.78 |
387353 | 5,862.56 |
387354 | 4,740.2 |
387355 | 17,876.98 |
387362 | 22,655.34 |
387363 | 14,020.27 |
387364 | 24,345.14 |
387365 | 12,012.21 |
387366 | 4,159.28 |
387411 | 17,535.9 |
387414 | 14,919.84 |
387415 | 10,997.41 |
387416 | 9,156.18 |
387422 | 27,716.33 |
387424 | 9,321.52 |
387425 | 15,339.67 |
387426 | 16,918.81 |
387432 | 18,434.58 |
387433 | 16,301.81 |
387434 | 11,544.51 |
387435 | 16,566.05 |
387436 | 20,564.78 |
387444 | 15,588.32 |
387445 | 16,584.24 |
387446 | 19,032.19 |
387452 | 4,023.37 |
387454 | 11,893.68 |
387455 | 16,885.25 |
387456 | 14,103.45 |
387461 | 7,519.72 |
387462 | 12,251.89 |
387463 | 11,237.24 |
387464 | 15,098.61 |
387465 | 15,267.54 |
387466 | 13,701.88 |
387655 | 34,145.28 |
396713 | 15,809.38 |
396916 | 29,795.75 |
397211 | 17,478.77 |
397212 | 17,917.6 |
397213 | 17,020.92 |
397214 | 14,587.45 |
397221 | 16,913.37 |
397222 | 15,046.59 |
397223 | 18,926.78 |
397224 | 14,012.34 |
397225 | 4,492.43 |
397231 | 15,836.4 |
397232 | 15,044.28 |
397233 | 16,910.95 |
397234 | 10,408.03 |
397241 | 19,711.21 |
397242 | 16,049.47 |
397246 | 6,700.17 |
397251 | 12,438.1 |
397261 | 3,747.42 |
397262 | 6,973.96 |
397263 | 24,589.25 |
397265 | 21,418.28 |
397311 | 10,479.96 |
397312 | 12,565.45 |
397313 | 12,763.1 |
397314 | 11,836.89 |
397315 | 17,415.85 |
397316 | 18,835.31 |
397321 | 2,659.27 |
397322 | 4,852.85 |
397323 | 14,665.03 |
397324 | 14,056.15 |
397325 | 16,306.41 |
397326 | 19,413.8 |
397331 | 6,397.24 |
397332 | 14,650.51 |
397333 | 10,719.23 |
397334 | 13,286.09 |
397335 | 16,130.4 |
397336 | 14,363.18 |
397342 | 16,767.06 |
397343 | 12,122.04 |
397344 | 12,245.57 |
397345 | 14,027.06 |
397346 | 14,156.59 |
397351 | 13,124.93 |
397352 | 11,299.38 |
397353 | 13,968.76 |
397354 | 15,552.68 |
397355 | 16,918.93 |
397356 | 11,629.44 |
397361 | 10,499.68 |
397362 | 10,186.87 |
397363 | 12,925.88 |
397364 | 16,113.9 |
397365 | 13,619.27 |
397366 | 11,535.26 |
397426 | 17,220.02 |
397446 | 4,509.4 |
397456 | 15,481.3 |
397463 | 21,312.16 |
397464 | 13,336.86 |
397465 | 16,157.31 |
397466 | 15,982.59 |
406611 | 17,834.35 |
406612 | 17,713.63 |
406613 | 13,435.28 |
406621 | 21,360.15 |
406623 | 7,757.35 |
406626 | 26,779.3 |
406643 | 26,987.59 |
406652 | 23,785.72 |
406711 | 17,240.17 |
406712 | 15,392.82 |
406713 | 22,208.37 |
406714 | 18,575.46 |
406715 | 20,725.75 |
406716 | 23,140.27 |
406721 | 21,876.89 |
406722 | 21,673.77 |
406723 | 21,319.75 |
406724 | 15,588.06 |
406725 | 23,094.56 |
406731 | 20,526.99 |
406732 | 20,644.99 |
406733 | 13,836.09 |
406735 | 30,360.99 |
406742 | 21,694.58 |
406744 | 22,579.05 |
406764 | 26,732.27 |
406765 | 34,208.01 |
406766 | 27,856.93 |
406811 | 21,767.87 |
406812 | 22,288.88 |
406813 | 12,987.03 |
406814 | 14,417.75 |
406815 | 17,797.24 |
406816 | 34,069.54 |
406821 | 17,973.87 |
406822 | 18,257.39 |
406826 | 19,855.89 |
406831 | 17,399.98 |
406832 | 19,063.13 |
406833 | 21,090.92 |
406834 | 12,892.94 |
406835 | 22,930.51 |
406841 | 19,347.14 |
406852 | 22,307.23 |
406861 | 18,832.54 |
406862 | 14,363.63 |
406914 | 19,919.01 |
406915 | 19,902.03 |
406916 | 21,387.52 |
406923 | 20,916.52 |
406924 | 18,837.25 |
406925 | 21,888.73 |
406926 | 23,608.78 |
406931 | 19,125.17 |
406932 | 18,553.28 |
406933 | 20,464.82 |
406934 | 23,694.07 |
406935 | 21,334.61 |
406936 | 23,444.56 |
406941 | 11,520.69 |
406942 | 15,838.64 |
406943 | 21,262.03 |
406944 | 20,367.85 |
406945 | 23,329.49 |
406946 | 12,421.53 |
406952 | 18,592.22 |
406954 | 21,730.93 |
406955 | 11,827.36 |
406965 | 18,602.93 |
406966 | 10,101.45 |
407011 | 32,914.52 |
407012 | 21,397.99 |
407013 | 8,495.69 |
407015 | 3,397.01 |
407016 | 10,726.37 |
407021 | 21,263.92 |
407032 | 33,670.01 |
407035 | 15,792.95 |
407041 | 22,835.79 |
407045 | 13,396.23 |
407055 | 13,149.76 |
407111 | 19,630.04 |
407112 | 15,793.91 |
407113 | 12,656.23 |
407114 | 10,582.02 |
407115 | 7,267.04 |
407116 | 9,169.37 |
407121 | 19,923.91 |
407122 | 15,993.83 |
407123 | 4,655.15 |
407131 | 17,779.79 |
407132 | 17,444.06 |
407133 | 27,730.46 |
407134 | 10,695.32 |
407135 | 12,808.62 |
407141 | 15,369.48 |
407142 | 24,273.41 |
407151 | 28,616.11 |
407163 | 37,491.78 |
407215 | 15,635.66 |
407216 | 15,669.92 |
407221 | 10,243.03 |
407223 | 9,822.67 |
407224 | 21,570.23 |
407225 | 23,673.57 |
407226 | 22,399.32 |
407231 | 13,376.62 |
407232 | 12,613.95 |
407233 | 19,862.15 |
407234 | 23,690.57 |
407235 | 18,461.23 |
407236 | 9,607.95 |
407241 | 22,507.93 |
407242 | 21,841.71 |
407243 | 20,159.13 |
407244 | 19,507.55 |
407245 | 15,971.83 |
407246 | 13,928.7 |
407251 | 21,040.27 |
407252 | 18,562.52 |
407253 | 17,846.31 |
407254 | 19,667.57 |
407255 | 12,958.01 |
407256 | 13,837.37 |
407261 | 18,331.4 |
407262 | 16,600.49 |
407263 | 18,142.1 |
407264 | 14,782.42 |
407265 | 6,451.31 |
407266 | 24,248.83 |
407316 | 9,524.72 |
407325 | 6,866.98 |
407326 | 9,721.77 |
407333 | 12,212.72 |
407335 | 20,038.13 |
407336 | 16,959.22 |
407342 | 31,151.72 |
407343 | 13,149.85 |
407344 | 13,931.31 |
407345 | 19,110.63 |
407346 | 21,863.35 |
407352 | 22,898.61 |
407353 | 19,857.05 |
407354 | 18,298.5 |
407355 | 17,771.4 |
407356 | 20,766.15 |
407361 | 20,761.54 |
407362 | 15,707.07 |
407363 | 16,799.37 |
407364 | 18,576.63 |
407365 | 15,769.39 |
407366 | 20,624.35 |
407466 | 8,101.06 |
416641 | 21,239.38 |
416642 | 22,408.23 |
416643 | 21,635.48 |
416644 | 20,456.54 |
416651 | 16,575.33 |
416652 | 21,301.24 |
416653 | 21,128.94 |
416654 | 17,231.8 |
416661 | 19,604.7 |
416662 | 21,412.99 |
416663 | 20,194.41 |
416664 | 14,389.01 |
416665 | 14,012.74 |
416711 | 23,361.93 |
416712 | 27,403.16 |
416713 | 18,357.89 |
416714 | 14,977.74 |
416715 | 10,631.92 |
416721 | 9,194.16 |
416722 | 8,982.02 |
416724 | 7,914.93 |
416742 | 23,168.71 |
416743 | 22,729.77 |
416744 | 18,264.33 |
416746 | 14,585.26 |
416755 | 23,296.45 |
416756 | 14,065.5 |
416762 | 13,784.28 |
416764 | 8,797.07 |
416765 | 18,310.69 |
416766 | 21,399.6 |
416816 | 19,763.75 |
416824 | 31,818.89 |
416825 | 20,547.8 |
416826 | 25,320.97 |
416833 | 32,257.58 |
416834 | 16,285.47 |
416835 | 14,192.33 |
416841 | 21,348.17 |
416842 | 23,491.23 |
416843 | 20,366.22 |
416844 | 18,250.78 |
416845 | 15,830.39 |
416851 | 24,513.21 |
416852 | 20,728.48 |
416853 | 19,117.05 |
416854 | 24,811.5 |
416856 | 25,329.63 |
416861 | 21,336.35 |
416862 | 19,843.13 |
416863 | 17,279.87 |
416864 | 12,844.64 |
416866 | 21,624.18 |
416912 | 20,435.41 |
416915 | 23,881.14 |
416916 | 26,263.29 |
416922 | 36,853.47 |
416924 | 16,693.17 |
416931 | 28,680.88 |
416932 | 22,311.11 |
416933 | 23,852.79 |
416934 | 20,408.51 |
416935 | 21,555.01 |
416942 | 24,590.32 |
416943 | 22,723.02 |
416944 | 24,574.25 |
416945 | 23,177.86 |
416952 | 8,741.99 |
416953 | 30,718.26 |
416954 | 18,703.97 |
416955 | 21,145.19 |
416956 | 22,416.44 |
416961 | 34,240.2 |
416962 | 16,041.16 |
416963 | 26,014.77 |
416964 | 17,495.85 |
416965 | 19,174.35 |
416966 | 21,297.83 |
417031 | 17,464.38 |
417042 | 18,096.42 |
417046 | 30,722.89 |
417051 | 21,575.57 |
417055 | 19,912.46 |
417061 | 16,927.48 |
417062 | 16,311.68 |
417145 | 5,652.97 |
417146 | 27,221.02 |
417154 | 9,655.15 |
417161 | 2,751.97 |
417162 | 2,669.66 |
417163 | 19,330.85 |
417164 | 16,245.26 |
417165 | 12,797.17 |
417262 | 13,434.36 |
417366 | 7,902.65 |
426752 | 19,077.19 |
426762 | 14,553.95 |
426763 | 16,025.21 |
426764 | 22,180.35 |
426765 | 23,306.26 |
426915 | 25,682.59 |
427034 | 9,367.42 |
427043 | 36,171.17 |
427044 | 26,533.56 |
427045 | 28,173.63 |
427056 | 17,770.43 |
427065 | 22,131.82 |
427066 | 23,369.7 |
The zone_summary
function can be used on any spatial
unit (spat
) . By setting
spat = scallopWindCloseSpatTable,
the exploratory data
analysis of trips inside the Wind polygons can be performed.
Number of observations in the Wind areas.
zone_out <-
zone_summary(scallopMainDataTable, project = proj,
spat = scallopWindCloseSpatTable,
zone.dat = "closeID",
zone.spat = "NAME",
count = TRUE,
na.rm = TRUE, dat.center = FALSE,
output = "tab_plot")
#> A line object has been specified, but lines is not in the mode
#> Adding lines to the mode...
zone_out$table %>%
pretty_lab() %>%
pretty_tab_sb(width = "40%")
closeID | n |
---|---|
NA | 9,938 |
OCS-A 0512 Remainder | 30 |
Empire Wind | 8 |
beach_lane_cable_routes | 4 |
Ocean Wind | 3 |
Bay State Wind | 2 |
OCS-A 0487 Remainder | 2 |
OCS-A 0501 Remainder | 2 |
OCS-A 0519 Remainder | 2 |
US Wind | 2 |
OCS-A 0482 | 1 |
OCS-A 0498 Remainder | 1 |
OCS-A 0499 | 1 |
OCS-A 0520 | 1 |
Revolution Wind | 1 |
Sunrise Wind | 1 |
mayflower_cable_routes | 1 |
Percent of observations in Wind areas.
zone_out <-
zone_summary(scallopMainDataTable, project = proj,
spat = scallopWindCloseSpatTable,
zone.dat = "closeID",
zone.spat = "NAME",
fun = "percent",
count = TRUE,
na.rm = TRUE, dat.center = FALSE,
output = "tab_plot")
#> A line object has been specified, but lines is not in the mode
#> Adding lines to the mode...
zone_out$table %>%
pretty_lab() %>%
pretty_tab_sb(width = "40%")
closeID | n | perc |
---|---|---|
NA | 9,938 | 99.38 |
OCS-A 0512 Remainder | 30 | 0.3 |
Empire Wind | 8 | 0.08 |
beach_lane_cable_routes | 4 | 0.04 |
Ocean Wind | 3 | 0.03 |
Bay State Wind | 2 | 0.02 |
OCS-A 0487 Remainder | 2 | 0.02 |
OCS-A 0501 Remainder | 2 | 0.02 |
OCS-A 0519 Remainder | 2 | 0.02 |
US Wind | 2 | 0.02 |
OCS-A 0482 | 1 | 0.01 |
OCS-A 0498 Remainder | 1 | 0.01 |
OCS-A 0499 | 1 | 0.01 |
OCS-A 0520 | 1 | 0.01 |
Revolution Wind | 1 | 0.01 |
Sunrise Wind | 1 | 0.01 |
mayflower_cable_routes | 1 | 0.01 |
Percent of total revenue by Wind area.
zone_out <-
zone_summary(scallopMainDataTable, project = proj,
spat = scallopWindCloseSpatTable,
zone.dat = "closeID",
zone.spat = "NAME",
var = "DOLLAR_OBSCURED",
fun = "percent",
count = FALSE,
na.rm = TRUE, dat.center = FALSE,
output = "tab_plot")
#> A line object has been specified, but lines is not in the mode
#> Adding lines to the mode...
zone_out$table %>%
pretty_lab() %>%
pretty_tab_sb(width = "70%")
closeID | DOLLAR_OBSCURED | DOLLAR_OBSCURED_perc |
---|---|---|
Bay State Wind | 268,052.8 | 0.02 |
Empire Wind | 989,665.8 | 0.07 |
OCS-A 0482 | 76,754.35 | 0.01 |
OCS-A 0487 Remainder | 142,405.4 | 0.01 |
OCS-A 0498 Remainder | 61,682.96 | 0 |
OCS-A 0499 | 41,571 | 0 |
OCS-A 0501 Remainder | 108,313.3 | 0.01 |
OCS-A 0512 Remainder | 4,638,950 | 0.34 |
OCS-A 0519 Remainder | 189,762.3 | 0.01 |
OCS-A 0520 | 4,094.6 | 0 |
Ocean Wind | 429,331.8 | 0.03 |
Revolution Wind | 7,498.53 | 0 |
Sunrise Wind | 102,066.5 | 0.01 |
US Wind | 33,066.77 | 0 |
beach_lane_cable_routes | 376,909.3 | 0.03 |
mayflower_cable_routes | 209,699.3 | 0.02 |
NA | 1,366,902,773 | 99.44 |
Percent of total revenue by fleet can be constructed using the
group="fleet"
argument.
zone_out <-
zone_summary(scallopMainDataTable, project = proj,
spat = scallopWindCloseSpatTable,
zone.dat = "closeID",
zone.spat = "NAME",
var = "DOLLAR_OBSCURED", group = "fleet",
fun = "percent",
count = FALSE,
na.rm = TRUE, dat.center = FALSE,
output = "tab_plot")
#> A line object has been specified, but lines is not in the mode
#> Adding lines to the mode...
#> A line object has been specified, but lines is not in the mode
#> Adding lines to the mode...
zone_out$table %>%
pretty_lab() %>%
pretty_tab_sb(width = "70%")
closeID | fleet | DOLLAR_OBSCURED | DOLLAR_OBSCURED_perc |
---|---|---|---|
Bay State Wind | Days at Sea | 268,052.8 | 0.02 |
Empire Wind | Access Area | 78,328.81 | 0.01 |
Empire Wind | Days at Sea | 911,337 | 0.07 |
OCS-A 0482 | Access Area | 76,754.35 | 0.01 |
OCS-A 0487 Remainder | Days at Sea | 142,405.4 | 0.01 |
OCS-A 0498 Remainder | Access Area | 61,682.96 | 0 |
OCS-A 0499 | Access Area | 41,571 | 0 |
OCS-A 0501 Remainder | Days at Sea | 108,313.3 | 0.01 |
OCS-A 0512 Remainder | Access Area | 34,369.16 | 0 |
OCS-A 0512 Remainder | Days at Sea | 4,604,581 | 0.33 |
OCS-A 0519 Remainder | Access Area | 189,762.3 | 0.01 |
OCS-A 0520 | Days at Sea | 4,094.6 | 0 |
Ocean Wind | Access Area | 141,135.1 | 0.01 |
Ocean Wind | Days at Sea | 288,196.8 | 0.02 |
Revolution Wind | Days at Sea | 7,498.53 | 0 |
Sunrise Wind | Days at Sea | 102,066.5 | 0.01 |
US Wind | Access Area | 33,066.77 | 0 |
beach_lane_cable_routes | Days at Sea | 376,909.3 | 0.03 |
mayflower_cable_routes | Days at Sea | 209,699.3 | 0.02 |
NA | Access Area | 676,272,015 | 49.2 |
NA | Days at Sea | 690,630,758 | 50.24 |
Average meat catch per closure area.
zone_out <-
zone_summary(scallopMainDataTable, project = proj,
spat = scallopWindCloseSpatTable,
zone.dat = "closeID",
zone.spat = "NAME",
var = "LANDED_OBSCURED",
fun = "mean",
count = FALSE,
na.rm = TRUE, dat.center = FALSE,
output = "tab_plot")
#> A line object has been specified, but lines is not in the mode
#> Adding lines to the mode...
zone_out$table %>%
pretty_lab() %>%
pretty_tab_sb(width = "50%")
closeID | LANDED_OBSCURED |
---|---|
Bay State Wind | 12.88 |
Empire Wind | 16.1 |
OCS-A 0482 | 9.9 |
OCS-A 0487 Remainder | 9.16 |
OCS-A 0498 Remainder | 6.05 |
OCS-A 0499 | 4.94 |
OCS-A 0501 Remainder | 6.05 |
OCS-A 0512 Remainder | 16.62 |
OCS-A 0519 Remainder | 11.28 |
OCS-A 0520 | 0.36 |
Ocean Wind | 15.99 |
Revolution Wind | 0.59 |
Sunrise Wind | 9.99 |
US Wind | 1.67 |
beach_lane_cable_routes | 9.95 |
mayflower_cable_routes | 15.43 |
NA | 14.83 |
Average meat catch by fleet.
zone_out <-
zone_summary(scallopMainDataTable, project = proj,
spat = scallopWindCloseSpatTable,
zone.dat = "closeID",
zone.spat = "NAME",
var = "LANDED_OBSCURED", group = "fleet",
fun = "mean",
count = FALSE,
na.rm = TRUE, dat.center = FALSE,
output = "tab_plot")
#> A line object has been specified, but lines is not in the mode
#> Adding lines to the mode...
#> A line object has been specified, but lines is not in the mode
#> Adding lines to the mode...
zone_out$table %>%
pretty_lab() %>%
pretty_tab_sb(width = "60%")
closeID | fleet | LANDED_OBSCURED |
---|---|---|
Bay State Wind | Days at Sea | 12.88 |
Empire Wind | Access Area | 10.55 |
Empire Wind | Days at Sea | 16.89 |
OCS-A 0482 | Access Area | 9.9 |
OCS-A 0487 Remainder | Days at Sea | 9.16 |
OCS-A 0498 Remainder | Access Area | 6.05 |
OCS-A 0499 | Access Area | 4.94 |
OCS-A 0501 Remainder | Days at Sea | 6.05 |
OCS-A 0512 Remainder | Access Area | 5.5 |
OCS-A 0512 Remainder | Days at Sea | 17 |
OCS-A 0519 Remainder | Access Area | 11.28 |
OCS-A 0520 | Days at Sea | 0.36 |
Ocean Wind | Access Area | 17.51 |
Ocean Wind | Days at Sea | 15.23 |
Revolution Wind | Days at Sea | 0.59 |
Sunrise Wind | Days at Sea | 9.99 |
US Wind | Access Area | 1.67 |
beach_lane_cable_routes | Days at Sea | 9.95 |
mayflower_cable_routes | Days at Sea | 15.43 |
NA | Access Area | 13.01 |
NA | Days at Sea | 17.24 |
FishSET has some functionality to detect outliers, and remove if necessary.
Vector | outlier_check | N | mean | median | SD | min | max | NAs | skew |
---|---|---|---|---|---|---|---|---|---|
LANDED_OBSCURED | None | 10,000 | 14.82 | 15.64 | 8.86 | 0.02 | 76.51 | 0 | 0.87 |
LANDED_OBSCURED | 5_95_quant | 9,000 | 14.31 | 15.64 | 6.64 | 1.6 | 31.45 | 0 | 0.06 |
LANDED_OBSCURED | 25_75_quant | 5,000 | 14.65 | 15.64 | 3.09 | 8.27 | 18.8 | 0 | -0.49 |
LANDED_OBSCURED | mean_2SD | 9,567 | 13.73 | 15.07 | 7.27 | 0.02 | 32.51 | 0 | 0.05 |
LANDED_OBSCURED | mean_3SD | 9,892 | 14.46 | 15.47 | 8.18 | 0.02 | 41.28 | 0 | 0.44 |
LANDED_OBSCURED | median_2SD | 9,615 | 13.83 | 15.13 | 7.37 | 0.02 | 33.34 | 0 | 0.1 |
LANDED_OBSCURED | median_3SD | 9,908 | 14.51 | 15.49 | 8.25 | 0.02 | 42.05 | 0 | 0.47 |
outlier_plot(scallopMainDataTable, proj,
x = "LANDED_OBSCURED",
dat.remove = "none",
x.dist = "normal",
output.screen = TRUE)
#> TableGrob (3 x 2) "arrange": 4 grobs
#> z cells name grob
#> 1 1 (2-2,1-1) arrange gtable[layout]
#> 2 2 (2-2,2-2) arrange gtable[layout]
#> 3 3 (3-3,1-1) arrange gtable[layout]
#> 4 4 (1-1,1-2) arrange text[GRID.text.434]
outlier_plot(scallopMainDataTable, proj,
x = "LANDED_OBSCURED",
dat.remove = "mean_3SD",
x.dist = "normal",
output.screen = TRUE)
#> TableGrob (3 x 2) "arrange": 4 grobs
#> z cells name grob
#> 1 1 (2-2,1-1) arrange gtable[layout]
#> 2 2 (2-2,2-2) arrange gtable[layout]
#> 3 3 (3-3,1-1) arrange gtable[layout]
#> 4 4 (1-1,1-2) arrange text[GRID.text.540]
FishSET can plot variables over time.
temp_plot(scallopMainDataTable, proj,
var.select = "LANDED_OBSCURED",
len.fun = "percent",
agg.fun = "sum",
date.var = "DATE_TRIP",
pages = "multi")
#> $scatter_plot
#>
#> $unique_plot
#>
#> $agg_plot
This plot reveals some seasonality in the Landed pounds.
temp_plot(scallopMainDataTable, proj,
var.select = "TRIP_LENGTH",
len.fun = "percent",
agg.fun = "sum",
date.var = "DATE_TRIP",
pages = "multi")
#> $scatter_plot
#>
#> $unique_plot
#>
#> $agg_plot
temp_plot(scallopMainDataTable, proj,
var.select = "DOLLAR_OBSCURED",
len.fun = "percent",
agg.fun = "sum",
date.var = "DATE_TRIP",
pages = "multi")
#> $scatter_plot
#>
#> $unique_plot
#>
#> $agg_plot
Trip length by meat catch.
xy_plot(scallopMainDataTable, proj,
var1 = "TRIP_LENGTH", var2 = "LANDED_OBSCURED",
regress = FALSE, alpha = .3)
Trip length by revenue.
xy_plot(scallopMainDataTable, proj,
var1 = "TRIP_LENGTH", var2 = "DOLLAR_OBSCURED",
regress = FALSE, alpha = .3)
Trip length by trip cost (Winsor).
xy_plot(scallopMainDataTable, proj,
var1 = "TRIP_LENGTH", var2 = "TRIP_COST_WINSOR_2020_DOL",
regress = FALSE, alpha = .3)
The winsorization of trip costs is apparent in the horizontal line of points just over $30,000.
A simple table of two-way correlations can be illuminative.
corr_outs <-
corr_out(scallopMainDataTable, proj,
variables = "all",
method = "pearson",
show_coef = FALSE)
#> Warning: No variance found in fleetAssignPlaceholder. Removed from correlation
#> test
corr_outs$plot
TRIPID | PERMIT.y | TRIP-LENGTH | port-lat | port-lon | previous-port-lat | previous-port-lon | TRIP-COST-WINSOR-2020-DOL | DDLAT | DDLON | ZoneID | LANDED-OBSCURED | DOLLAR-OBSCURED | DOLLAR-2020-OBSCURED | DOLLAR-ALL-SP-2020-OBSCURED | OPERATING-PROFIT-2020 | DB-LANDING-YEAR | CPUE | CPUE-p | VPUE | VPUE-p | ZONE-ID | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TRIPID | 1.00 | -0.03 | -0.16 | 0.17 | 0.16 | 0.15 | 0.15 | -0.27 | 0.15 | 0.16 | 0.13 | -0.02 | 0.17 | 0.08 | 0.07 | 0.09 | 0.99 | 0.02 | 0.10 | 0.17 | 0.32 | 0.13 |
PERMIT.y | -0.03 | 1.00 | 0.03 | 0.10 | 0.10 | 0.09 | 0.10 | 0.00 | 0.05 | 0.05 | 0.03 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | -0.03 | 0.01 | -0.02 | 0.01 | -0.01 | 0.03 |
TRIP-LENGTH | -0.16 | 0.03 | 1.00 | 0.09 | 0.13 | 0.04 | 0.08 | 0.83 | 0.12 | 0.11 | 0.10 | 0.65 | 0.58 | 0.60 | 0.55 | 0.51 | -0.15 | -0.03 | 0.04 | -0.04 | 0.01 | 0.10 |
port-lat | 0.17 | 0.10 | 0.09 | 1.00 | 0.99 | 0.69 | 0.70 | 0.13 | 0.50 | 0.51 | 0.44 | 0.19 | 0.24 | 0.23 | 0.22 | 0.22 | 0.17 | 0.07 | 0.17 | 0.14 | 0.25 | 0.44 |
port-lon | 0.16 | 0.10 | 0.13 | 0.99 | 1.00 | 0.68 | 0.72 | 0.17 | 0.51 | 0.53 | 0.45 | 0.22 | 0.26 | 0.25 | 0.24 | 0.23 | 0.17 | 0.07 | 0.18 | 0.14 | 0.25 | 0.45 |
previous-port-lat | 0.15 | 0.09 | 0.04 | 0.69 | 0.68 | 1.00 | 0.98 | 0.09 | 0.41 | 0.43 | 0.36 | 0.15 | 0.20 | 0.19 | 0.18 | 0.18 | 0.15 | 0.06 | 0.15 | 0.12 | 0.22 | 0.36 |
previous-port-lon | 0.15 | 0.10 | 0.08 | 0.70 | 0.72 | 0.98 | 1.00 | 0.13 | 0.44 | 0.47 | 0.38 | 0.17 | 0.22 | 0.21 | 0.20 | 0.20 | 0.16 | 0.06 | 0.15 | 0.12 | 0.22 | 0.38 |
TRIP-COST-WINSOR-2020-DOL | -0.27 | 0.00 | 0.83 | 0.13 | 0.17 | 0.09 | 0.13 | 1.00 | 0.16 | 0.15 | 0.14 | 0.62 | 0.59 | 0.62 | 0.57 | 0.53 | -0.29 | 0.02 | 0.13 | 0.04 | 0.13 | 0.14 |
DDLAT | 0.15 | 0.05 | 0.12 | 0.50 | 0.51 | 0.41 | 0.44 | 0.16 | 1.00 | 0.87 | 0.92 | 0.20 | 0.27 | 0.27 | 0.25 | 0.25 | 0.14 | 0.05 | 0.12 | 0.13 | 0.22 | 0.92 |
DDLON | 0.16 | 0.05 | 0.11 | 0.51 | 0.53 | 0.43 | 0.47 | 0.15 | 0.87 | 1.00 | 0.79 | 0.19 | 0.25 | 0.24 | 0.23 | 0.23 | 0.16 | 0.06 | 0.14 | 0.13 | 0.23 | 0.79 |
ZoneID | 0.13 | 0.03 | 0.10 | 0.44 | 0.45 | 0.36 | 0.38 | 0.14 | 0.92 | 0.79 | 1.00 | 0.17 | 0.24 | 0.23 | 0.22 | 0.22 | 0.13 | 0.04 | 0.11 | 0.12 | 0.20 | 1.00 |
LANDED-OBSCURED | -0.02 | 0.00 | 0.65 | 0.19 | 0.22 | 0.15 | 0.17 | 0.62 | 0.20 | 0.19 | 0.17 | 1.00 | 0.91 | 0.92 | 0.85 | 0.84 | -0.02 | 0.33 | 0.70 | 0.37 | 0.60 | 0.17 |
DOLLAR-OBSCURED | 0.17 | 0.00 | 0.58 | 0.24 | 0.26 | 0.20 | 0.22 | 0.59 | 0.27 | 0.25 | 0.24 | 0.91 | 1.00 | 1.00 | 0.91 | 0.91 | 0.17 | 0.30 | 0.65 | 0.46 | 0.74 | 0.24 |
DOLLAR-2020-OBSCURED | 0.08 | 0.01 | 0.60 | 0.23 | 0.25 | 0.19 | 0.21 | 0.62 | 0.27 | 0.24 | 0.23 | 0.92 | 1.00 | 1.00 | 0.92 | 0.91 | 0.08 | 0.30 | 0.65 | 0.45 | 0.72 | 0.23 |
DOLLAR-ALL-SP-2020-OBSCURED | 0.07 | 0.00 | 0.55 | 0.22 | 0.24 | 0.18 | 0.20 | 0.57 | 0.25 | 0.23 | 0.22 | 0.85 | 0.91 | 0.92 | 1.00 | 1.00 | 0.07 | 0.28 | 0.60 | 0.41 | 0.66 | 0.22 |
OPERATING-PROFIT-2020 | 0.09 | 0.00 | 0.51 | 0.22 | 0.23 | 0.18 | 0.20 | 0.53 | 0.25 | 0.23 | 0.22 | 0.84 | 0.91 | 0.91 | 1.00 | 1.00 | 0.09 | 0.28 | 0.61 | 0.42 | 0.67 | 0.22 |
DB-LANDING-YEAR | 0.99 | -0.03 | -0.15 | 0.17 | 0.17 | 0.15 | 0.16 | -0.29 | 0.14 | 0.16 | 0.13 | -0.02 | 0.17 | 0.08 | 0.07 | 0.09 | 1.00 | 0.02 | 0.10 | 0.17 | 0.32 | 0.13 |
CPUE | 0.02 | 0.01 | -0.03 | 0.07 | 0.07 | 0.06 | 0.06 | 0.02 | 0.05 | 0.06 | 0.04 | 0.33 | 0.30 | 0.30 | 0.28 | 0.28 | 0.02 | 1.00 | 0.48 | 0.93 | 0.43 | 0.04 |
CPUE-p | 0.10 | -0.02 | 0.04 | 0.17 | 0.18 | 0.15 | 0.15 | 0.13 | 0.12 | 0.14 | 0.11 | 0.70 | 0.65 | 0.65 | 0.60 | 0.61 | 0.10 | 0.48 | 1.00 | 0.57 | 0.88 | 0.11 |
VPUE | 0.17 | 0.01 | -0.04 | 0.14 | 0.14 | 0.12 | 0.12 | 0.04 | 0.13 | 0.13 | 0.12 | 0.37 | 0.46 | 0.45 | 0.41 | 0.42 | 0.17 | 0.93 | 0.57 | 1.00 | 0.63 | 0.12 |
VPUE-p | 0.32 | -0.01 | 0.01 | 0.25 | 0.25 | 0.22 | 0.22 | 0.13 | 0.22 | 0.23 | 0.20 | 0.60 | 0.74 | 0.72 | 0.66 | 0.67 | 0.32 | 0.43 | 0.88 | 0.63 | 1.00 | 0.20 |
ZONE-ID | 0.13 | 0.03 | 0.10 | 0.44 | 0.45 | 0.36 | 0.38 | 0.14 | 0.92 | 0.79 | 1.00 | 0.17 | 0.24 | 0.23 | 0.22 | 0.22 | 0.13 | 0.04 | 0.11 | 0.12 | 0.20 | 1.00 |
Note the strong correlation between TRIP_LENGTH
and the
TRIP_COST_WINSOR
variables. This is because Trip costs are
predicted from a statistical relationship between Trip length and costs
on a subset of observed trips. There also is a moderate correlation
between port_lat
and previous_port_lat.
This
occurs because trips usually use 1 port.
Vessel count by year.
ves_out <-
vessel_count(scallopMainDataTable, proj,
v_id = "PERMIT.y",
date = "DATE_TRIP",
period = "year", type = "line")
#> Joining with `by = join_by(DATE_TRIP)`
#> Warning: Setting row names on a tibble is deprecated.
ves_out$table %>% pretty_tab()
year | PERMIT.y |
---|---|
2007 | 98 |
2008 | 96 |
2009 | 101 |
2010 | 100 |
2011 | 100 |
2012 | 98 |
2013 | 95 |
2014 | 96 |
2015 | 90 |
2016 | 92 |
2017 | 97 |
2018 | 98 |
2019 | 98 |
Vessel count by fleet.
ves_out <-
vessel_count(scallopMainDataTable, proj,
v_id = "PERMIT.y",
group = "fleet",
output = "table")
#> Joining with `by = join_by(fleet)`
#> Warning: Setting row names on a tibble is deprecated.
ves_out$table %>% pretty_tab()
#> Warning: Unknown or uninitialised column: `table`.
Vessel count by year and fleet.
ves_out <-
vessel_count(scallopMainDataTable, proj,
v_id = "PERMIT.y",
group = "fleet",
date = "DATE_TRIP",
period = "year", type = "line")
#> Joining with `by = join_by(fleet, DATE_TRIP)`
#> Warning: Setting row names on a tibble is deprecated.
ves_out$table %>%
pretty_lab(cols = "PERMIT.y") %>%
pretty_tab_sb(width = "40%")
year | fleet | PERMIT.y |
---|---|---|
2007 | Access Area | 94 |
2007 | Days at Sea | 91 |
2008 | Access Area | 93 |
2008 | Days at Sea | 89 |
2009 | Access Area | 100 |
2009 | Days at Sea | 99 |
2010 | Access Area | 97 |
2010 | Days at Sea | 95 |
2011 | Access Area | 98 |
2011 | Days at Sea | 92 |
2012 | Access Area | 97 |
2012 | Days at Sea | 95 |
2013 | Access Area | 91 |
2013 | Days at Sea | 89 |
2014 | Access Area | 89 |
2014 | Days at Sea | 91 |
2015 | Access Area | 87 |
2015 | Days at Sea | 85 |
2016 | Access Area | 91 |
2016 | Days at Sea | 86 |
2017 | Access Area | 97 |
2017 | Days at Sea | 86 |
2018 | Access Area | 98 |
2018 | Days at Sea | 84 |
2019 | Access Area | 98 |
2019 | Days at Sea | 80 |
vessel count by gearcode.
ves_out <-
vessel_count(scallopMainDataTable, proj,
v_id = "PERMIT.y",
group = "GEARCODE", tran = "log")
#> Joining with `by = join_by(GEARCODE)`
#> Warning: Setting row names on a tibble is deprecated.
ves_out$table %>%
pretty_lab() %>%
pretty_tab()
GEARCODE | PERMIT.y |
---|---|
DREDGE | 130 |
OTHER | 1 |
TRAWL-BOTTOM | 5 |
Total meat catch by year.
catch_out <-
species_catch(scallopMainDataTable, proj,
species = "LANDED_OBSCURED",
date = "DATE_TRIP",
period = "year",
fun = "sum",
type = "line", format_lab = "decimal")
#> Joining with `by = join_by(DATE_TRIP)`
catch_out$table %>%
pretty_lab(cols = "LANDED_OBSCURED") %>%
pretty_tab()
year | LANDED_OBSCURED |
---|---|
2007 | 9,931.51 |
2008 | 11,702.12 |
2009 | 13,420.05 |
2010 | 13,637.72 |
2011 | 13,996.77 |
2012 | 13,476.78 |
2013 | 8,982.47 |
2014 | 7,316.64 |
2015 | 7,706.52 |
2016 | 8,464.29 |
2017 | 11,756.92 |
2018 | 13,500.97 |
2019 | 14,328.6 |
Total meat catch by fleet.
catch_out <-
species_catch(scallopMainDataTable, proj,
species = "LANDED_OBSCURED",
group = "fleet",
fun = "sum",
type = "bar", format_lab = "decimal")
#> Joining with `by = join_by(fleet)`
catch_out$table %>%
pretty_lab(cols = "LANDED_OBSCURED") %>%
pretty_tab()
fleet | LANDED_OBSCURED |
---|---|
Access Area | 73,842.46 |
Days at Sea | 74,378.91 |
Total meat catch by year and fleet.
catch_out <-
species_catch(scallopMainDataTable, proj,
species = "LANDED_OBSCURED",
date = "DATE_TRIP",
period = "year",
group = "fleet",
fun = "sum",
type = "line", format_lab = "decimal")
#> Joining with `by = join_by(fleet, DATE_TRIP)`
catch_out$table %>%
pretty_lab(cols = "LANDED_OBSCURED") %>%
pretty_tab_sb(width = "40%")
year | fleet | LANDED_OBSCURED |
---|---|---|
2007 | Access Area | 5,706.6 |
2007 | Days at Sea | 4,224.91 |
2008 | Access Area | 7,216.21 |
2008 | Days at Sea | 4,485.92 |
2009 | Access Area | 6,843.84 |
2009 | Days at Sea | 6,576.2 |
2010 | Access Area | 5,520.37 |
2010 | Days at Sea | 8,117.35 |
2011 | Access Area | 6,366.48 |
2011 | Days at Sea | 7,630.29 |
2012 | Access Area | 5,680.09 |
2012 | Days at Sea | 7,796.69 |
2013 | Access Area | 2,141.4 |
2013 | Days at Sea | 6,841.07 |
2014 | Access Area | 1,693.68 |
2014 | Days at Sea | 5,622.95 |
2015 | Access Area | 3,921.89 |
2015 | Days at Sea | 3,784.62 |
2016 | Access Area | 3,928.59 |
2016 | Days at Sea | 4,535.7 |
2017 | Access Area | 6,112.54 |
2017 | Days at Sea | 5,644.38 |
2018 | Access Area | 8,712.77 |
2018 | Days at Sea | 4,788.2 |
2019 | Access Area | 9,998 |
2019 | Days at Sea | 4,330.6 |
Average CPUE by year.
cpue_out <-
species_catch(scallopMainDataTable, proj,
species = "CPUE",
date = "DATE_TRIP",
period = "year",
fun = "mean", type = "line")
#> Joining with `by = join_by(DATE_TRIP)`
cpue_out$table %>%
pretty_lab(cols = "CPUE") %>%
pretty_tab()
year | CPUE |
---|---|
2007 | 1.71 |
2008 | 2.14 |
2009 | 2.11 |
2010 | 1.98 |
2011 | 2.16 |
2012 | 2.06 |
2013 | 1.96 |
2014 | 1.78 |
2015 | 1.84 |
2016 | 1.53 |
2017 | 2.03 |
2018 | 2.25 |
2019 | 2.24 |
Average CPUE by year and fleet.
cpue_out <-
species_catch(scallopMainDataTable, proj,
species = "CPUE",
date = "DATE_TRIP",
period = "year",
group = "fleet",
fun = "mean", type = "line")
#> Joining with `by = join_by(fleet, DATE_TRIP)`
cpue_out$table %>%
pretty_lab(cols = "CPUE") %>%
pretty_tab_sb(width = "40%")
year | fleet | CPUE |
---|---|---|
2007 | Access Area | 2.13 |
2007 | Days at Sea | 1.19 |
2008 | Access Area | 2.76 |
2008 | Days at Sea | 1.29 |
2009 | Access Area | 2.05 |
2009 | Days at Sea | 2.18 |
2010 | Access Area | 1.71 |
2010 | Days at Sea | 2.28 |
2011 | Access Area | 1.89 |
2011 | Days at Sea | 2.6 |
2012 | Access Area | 1.72 |
2012 | Days at Sea | 2.49 |
2013 | Access Area | 1.24 |
2013 | Days at Sea | 2.45 |
2014 | Access Area | 1.64 |
2014 | Days at Sea | 1.85 |
2015 | Access Area | 2.31 |
2015 | Days at Sea | 1.36 |
2016 | Access Area | 1.53 |
2016 | Days at Sea | 1.54 |
2017 | Access Area | 2 |
2017 | Days at Sea | 2.07 |
2018 | Access Area | 2.31 |
2018 | Days at Sea | 2.09 |
2019 | Access Area | 2.28 |
2019 | Days at Sea | 2.12 |
Average VPUE by year.
vpue_out <-
species_catch(scallopMainDataTable, proj,
species = "VPUE",
date = "DATE_TRIP",
period = "year",
fun = "mean", type = "line")
#> Joining with `by = join_by(DATE_TRIP)`
vpue_out$table %>%
pretty_lab(cols = "VPUE") %>%
pretty_tab()
year | VPUE |
---|---|
2007 | 11,216.91 |
2008 | 14,807.41 |
2009 | 13,694.33 |
2010 | 16,039.3 |
2011 | 21,511.01 |
2012 | 20,405.14 |
2013 | 22,201.91 |
2014 | 22,354.77 |
2015 | 22,822.66 |
2016 | 18,153.58 |
2017 | 20,256.65 |
2018 | 20,940.58 |
2019 | 21,062.97 |
Average VPUE by year and fleet.
vpue_out <-
species_catch(scallopMainDataTable, proj,
species = "VPUE",
date = "DATE_TRIP",
period = "year",
group = "fleet",
fun = "mean", type = "line")
#> Joining with `by = join_by(fleet, DATE_TRIP)`
vpue_out$table %>%
pretty_lab(cols = "VPUE") %>%
pretty_tab_sb(width = "40%")
year | fleet | VPUE |
---|---|---|
2007 | Access Area | 14,054.84 |
2007 | Days at Sea | 7,787.08 |
2008 | Access Area | 19,176.6 |
2008 | Days at Sea | 8,944.48 |
2009 | Access Area | 13,567.8 |
2009 | Days at Sea | 13,854.48 |
2010 | Access Area | 14,678.53 |
2010 | Days at Sea | 17,574.35 |
2011 | Access Area | 18,967.12 |
2011 | Days at Sea | 25,531.48 |
2012 | Access Area | 17,096.89 |
2012 | Days at Sea | 24,522.17 |
2013 | Access Area | 14,437.7 |
2013 | Days at Sea | 27,552.04 |
2014 | Access Area | 20,732.08 |
2014 | Days at Sea | 23,097.61 |
2015 | Access Area | 28,535.36 |
2015 | Days at Sea | 16,879.25 |
2016 | Access Area | 17,909.21 |
2016 | Days at Sea | 18,364.85 |
2017 | Access Area | 21,327.81 |
2017 | Days at Sea | 18,722.65 |
2018 | Access Area | 21,625.58 |
2018 | Days at Sea | 19,289.61 |
2019 | Access Area | 20,920.47 |
2019 | Days at Sea | 21,404.03 |
Average VPUE by gearcode.
vpue_out <-
species_catch(scallopMainDataTable, proj,
species = "VPUE",
group = "GEARCODE",
fun = "mean", type = "line")
#> Joining with `by = join_by(GEARCODE)`
vpue_out$table %>%
pretty_lab() %>%
pretty_tab()
GEARCODE | VPUE |
---|---|
DREDGE | 18,745.93 |
OTHER | 14,069.03 |
TRAWL-BOTTOM | 10,273.8 |
FishSET can make various distributional plots
KDE, ECDF, and CDF of meat catch, note the tran= "log"
option to do a log transformation of LANDED_OBSCURED.
KDE, ECDF, and CDF of meat catch by fleet can be easily produced
using the group="fleet"
option.
density_plot(scallopMainDataTable, proj,
var = "LANDED_OBSCURED",
group = "fleet", position = "stack",
type = "all", tran = "log", pages = "multi")
KDE of meat catch by year.