
Package: bayesdfa (via r-universe)
October 6, 2024

Type Package

Title Bayesian Dynamic Factor Analysis (DFA) with 'Stan'

Version 1.3.3

Description Implements Bayesian dynamic factor analysis with 'Stan'.
Dynamic factor analysis is a dimension reduction tool for
multivariate time series. 'bayesdfa' extends conventional
dynamic factor models in several ways. First, extreme events
may be estimated in the latent trend by modeling process error
with a student-t distribution. Second, alternative constraints
(including proportions are allowed). Third, the estimated
dynamic factors can be analyzed with hidden Markov models to
evaluate support for latent regimes.

License GPL (>=3)

Encoding UTF-8

Depends R (>= 3.5.0)

Imports dplyr, ggplot2, loo (>= 2.7.0), methods, mgcv (>= 1.8.13),
Rcpp (>= 0.12.0), reshape2, rstantools (>= 2.1.1), rlang, rstan
(>= 2.26.0), splines, viridisLite

LinkingTo BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0),
RcppParallel (>= 5.0.1), rstan (>= 2.26.0), StanHeaders (>=
2.26.0)

Suggests testthat, parallel, knitr, rmarkdown

URL https://fate-ewi.github.io/bayesdfa/

BugReports https://github.com/fate-ewi/bayesdfa/issues

RoxygenNote 7.3.1

VignetteBuilder knitr

Roxygen list(markdown = TRUE)

SystemRequirements GNU make

Biarch true

Repository https://noaa-fisheries-integrated-toolbox.r-universe.dev

1

https://fate-ewi.github.io/bayesdfa/
https://github.com/fate-ewi/bayesdfa/issues

2 bayesdfa-package

RemoteUrl https://github.com/fate-ewi/bayesdfa

RemoteRef HEAD

RemoteSha 6c7e03634c5ec6546050d211e68a6bfaad9e1543

Contents
bayesdfa-package . 2
dfa_cv . 3
dfa_fitted . 5
dfa_loadings . 6
dfa_trends . 7
find_dfa_trends . 7
find_inverted_chains . 9
find_regimes . 9
find_swans . 10
fit_dfa . 11
fit_regimes . 16
hmm_init . 17
invert_chains . 18
is_converged . 18
loo.bayesdfa . 19
plot_fitted . 19
plot_loadings . 20
plot_regime_model . 21
plot_trends . 22
predicted . 23
rotate_trends . 24
sim_dfa . 24
trend_cor . 26

Index 28

bayesdfa-package The ’bayesdfa’ package.

Description

A DESCRIPTION OF THE PACKAGE

Author(s)

Maintainer: Eric J. Ward <eric.ward@noaa.gov>

Authors:

• Sean C. Anderson

• Luis A. Damiano

dfa_cv 3

• Michael J. Malick

Other contributors:

• Mary E. Hunsicker, [contributor]

• Mike A. Litzow [contributor]

• Mark D. Scheuerell [contributor]

• Elizabeth E. Holmes [contributor]

• Nick Tolimieri [contributor]

• Trustees of Columbia University [copyright holder]

References

Stan Development Team (2020). RStan: the R interface to Stan. R package version 2.21.2.
https://mc-stan.org

See Also

Useful links:

• https://fate-ewi.github.io/bayesdfa/

• Report bugs at https://github.com/fate-ewi/bayesdfa/issues

dfa_cv Apply cross validation to DFA model

Description

Apply cross validation to DFA model

Usage

dfa_cv(
stanfit,
cv_method = c("loocv", "lfocv"),
fold_ids = NULL,
n_folds = 10,
estimation = c("sampling", "optimizing", "vb"),
iter = 2000,
chains = 4,
thin = 1,
...

)

https://fate-ewi.github.io/bayesdfa/
https://github.com/fate-ewi/bayesdfa/issues

4 dfa_cv

Arguments

stanfit A stanfit object, to preserve the model structure from a call to fit_dfa()

cv_method The method used for cross validation. The options are ’loocv’, where time is
ignored and each data point is assigned randomly to a fold. The method ’ltocv’
is leave time out cross validation, and time slices are iteratively held out out.
Finally the method ’lfocv’ implements leave future out cross validation to do
one-step ahead predictions.

fold_ids A vector whose length is the same as the number of total data points. Elements
are the fold id of each data point. If not all data points are used (e.g. the lfocv or
ltocv approach might only use 10 time steps) the value can be something other
than a numbber, e.g. NA

n_folds Number of folds, defaults to 10

estimation Character string. Should the model be sampled using rstan::sampling()
("sampling",default), rstan::optimizing() ("optimizing"), variational infer-
ence rstan::vb() ("vb").

iter Number of iterations in Stan sampling, defaults to 2000.

chains Number of chains in Stan sampling, defaults to 4.

thin Thinning rate in Stan sampling, defaults to 1.

... Any other arguments to pass to rstan::sampling().

Examples

Not run:
set.seed(42)
s <- sim_dfa(num_trends = 1, num_years = 20, num_ts = 3)
obs <- c(s$y_sim[1,], s$y_sim[2,], s$y_sim[3,])
long <- data.frame("obs" = obs, "ts" = sort(rep(1:3, 20)),
"time" = rep(1:20, 3))
m <- fit_dfa(y = long, data_shape = "long", estimation="none")
random folds
fit_cv <- dfa_cv(m, cv_method = "loocv", n_folds = 5, iter = 50,
chains = 1, estimation="sampling")

folds can also be passed in
fold_ids <- sample(1:5, size = nrow(long), replace = TRUE)
m <- fit_dfa(y = long, data_shape = "long", estimation="none")
fit_cv <- dfa_cv(m, cv_method = "loocv", n_folds = 5, iter = 50, chains = 1,
fold_ids = fold_ids, estimation="sampling")

do an example of leave-time-out cross validation where years are dropped
fold_ids <- long$time
m <- fit_dfa(y = long, data_shape = "long", estimation="none")
fit_cv <- dfa_cv(m, cv_method = "loocv", iter = 100, chains = 1,
fold_ids = fold_ids)

example with covariates and long format data
obs_covar <- expand.grid("time" = 1:20, "timeseries" = 1:3,
"covariate" = 1:2)

dfa_fitted 5

obs_covar$value <- rnorm(nrow(obs_covar), 0, 0.1)
obs <- c(s$y_sim[1,], s$y_sim[2,], s$y_sim[3,])
m <- fit_dfa(y = long, obs_covar = obs_covar,
data_shape = "long", estimation="none")
fit_cv <- dfa_cv(m, cv_method = "loocv", n_folds = 5,
iter = 50, chains = 1, estimation="sampling")

End(Not run)

dfa_fitted Get the fitted values from a DFA as a data frame

Description

Get the fitted values from a DFA as a data frame

Usage

dfa_fitted(modelfit, conf_level = 0.95, names = NULL)

Arguments

modelfit Output from fit_dfa.

conf_level Probability level for CI.

names Optional vector of names for time series labels. Should be same length as the
number of time series.

Value

A data frame with the following columns: ID is an identifier for each time series, time is the time
step, y is the observed values standardized to mean 0 and unit variance, estimate is the mean fitted
value, lower is the lower CI, and upper is the upper CI.

See Also

predicted plot_fitted fit_dfa

Examples

y <- sim_dfa(num_trends = 2, num_years = 20, num_ts = 4)
m <- fit_dfa(y = y$y_sim, num_trends = 2, iter = 50, chains = 1)
fitted <- dfa_fitted(m)

6 dfa_loadings

dfa_loadings Get the loadings from a DFA as a data frame

Description

Get the loadings from a DFA as a data frame

Usage

dfa_loadings(rotated_modelfit, names = NULL, summary = TRUE, conf_level = 0.95)

Arguments

rotated_modelfit

Output from rotate_trends.

names An optional vector of names for plotting the loadings.

summary Logical. Should the full posterior densities be returned? Defaults to TRUE.

conf_level Confidence level for credible intervals. Defaults to 0.95.

Value

A data frame with the following columns: name is an identifier for each loading, trend is the trend
for the loading, median is the posterior median loading, lower is the lower CI, upper is the upper
CI, and prob_diff0 is the probability the loading is different than 0. When summary = FALSE, there
is no lower or upper columns and instead there are columns chain and draw.

See Also

plot_loadings fit_dfa rotate_trends

Examples

set.seed(42)
s <- sim_dfa(num_trends = 2, num_ts = 4, num_years = 10)
only 1 chain and 180 iterations used so example runs quickly:
m <- fit_dfa(y = s$y_sim, num_trends = 2, iter = 50, chains = 1)
r <- rotate_trends(m)
loadings <- dfa_loadings(r, summary = TRUE)
loadings <- dfa_loadings(r, summary = FALSE)

dfa_trends 7

dfa_trends Get the trends from a DFA as a data frame

Description

Get the trends from a DFA as a data frame

Usage

dfa_trends(rotated_modelfit, years = NULL)

Arguments

rotated_modelfit

Output from rotate_trends.

years Optional numeric vector of years.

Value

A data frame with the following columns: time is the time step, trend_number is an identifier for
each trend, estimate is the trend mean, lower is the lower CI, and upper is the upper CI.

See Also

plot_trends fit_dfa rotate_trends

Examples

set.seed(1)
s <- sim_dfa(num_trends = 1)
m <- fit_dfa(y = s$y_sim, num_trends = 1, iter = 50, chains = 1)
r <- rotate_trends(m)
trends <- dfa_trends(r)

find_dfa_trends Find the best number of trends according to LOOIC

Description

Fit a DFA with different number of trends and return the leave one out (LOO) value as calculated
by the loo package.

8 find_dfa_trends

Usage

find_dfa_trends(
y = y,
kmin = 1,
kmax = 5,
iter = 2000,
thin = 1,
compare_normal = FALSE,
convergence_threshold = 1.05,
variance = c("equal", "unequal"),
...

)

Arguments

y A matrix of data to fit. Columns represent time element.

kmin Minimum number of trends, defaults to 1.

kmax Maximum number of trends, defaults to 5.

iter Iterations when sampling from each Stan model, defaults to 2000.

thin Thinning rate when sampling from each Stan model, defaults to 1.

compare_normal If TRUE, does model selection comparison of Normal vs. Student-t errors

convergence_threshold

The maximum allowed value of Rhat to determine convergence of parameters

variance Vector of variance arguments for searching over large groups of models. Can be
either or both of ("equal","unequal")

... Other arguments to pass to fit_dfa()

Examples

set.seed(42)
s <- sim_dfa(num_trends = 2, num_years = 20, num_ts = 3)
only 1 chain and 180 iterations used so example runs quickly:
m <- find_dfa_trends(

y = s$y_sim, iter = 50,
kmin = 1, kmax = 2, chains = 1, compare_normal = FALSE,
variance = "equal", convergence_threshold = 1.1,
control = list(adapt_delta = 0.95, max_treedepth = 20)

)
m$summary
m$best_model

find_inverted_chains 9

find_inverted_chains Find which chains to invert

Description

Find which chains to invert by checking the sum of the squared deviations between the first chain
and each other chain.

Usage

find_inverted_chains(model, trend = 1, plot = FALSE)

Arguments

model A Stan model, rstanfit object

trend Which trend to check

plot Logical: should a plot of the trend for each chain be made? Defaults to FALSE

See Also

invert_chains

Examples

set.seed(2)
s <- sim_dfa(num_trends = 2)
set.seed(1)
m <- fit_dfa(y = s$y_sim, num_trends = 1, iter = 30, chains = 2)
chains were already inverted, but we can redo that, as an example, with:
find_inverted_chains(m$model, plot = TRUE)

find_regimes Fit multiple models with differing numbers of regimes to trend data

Description

Fit multiple models with differing numbers of regimes to trend data

10 find_swans

Usage

find_regimes(
y,
sds = NULL,
min_regimes = 1,
max_regimes = 3,
iter = 2000,
thin = 1,
chains = 1,
...

)

Arguments

y Data, time series or trend from fitted DFA model.

sds Optional time series of standard deviations of estimates. If passed in, residual
variance not estimated.

min_regimes Smallest of regimes to evaluate, defaults to 1.

max_regimes Biggest of regimes to evaluate, defaults to 3.

iter MCMC iterations, defaults to 2000.

thin MCMC thinning rate, defaults to 1.

chains MCMC chains; defaults to 1 (note that running multiple chains may result in a
"label switching" problem where the regimes are identified with different IDs
across chains).

... Other parameters to pass to rstan::sampling().

Examples

data(Nile)
find_regimes(log(Nile), iter = 50, chains = 1, max_regimes = 2)

find_swans Find outlying "black swan" jumps in trends

Description

Find outlying "black swan" jumps in trends

Usage

find_swans(rotated_modelfit, threshold = 0.01, plot = FALSE)

fit_dfa 11

Arguments

rotated_modelfit

Output from rotate_trends().

threshold A probability threshold below which to flag trend events as extreme

plot Logical: should a plot be made?

Value

Prints a ggplot2 plot if plot = TRUE; returns a data frame indicating the probability that any given
point in time represents a "black swan" event invisibly.

References

Anderson, S.C., Branch, T.A., Cooper, A.B., and Dulvy, N.K. 2017. Black-swan events in animal
populations. Proceedings of the National Academy of Sciences 114(12): 3252–3257. https://doi.org/10.1073/pnas.1611525114

Examples

set.seed(1)
s <- sim_dfa(num_trends = 1, num_ts = 3, num_years = 30)
s$y_sim[1, 15] <- s$y_sim[1, 15] - 6
plot(s$y_sim[1,], type = "o")
abline(v = 15, col = "red")
only 1 chain and 250 iterations used so example runs quickly:
m <- fit_dfa(y = s$y_sim, num_trends = 1, iter = 50, chains = 1, nu_fixed = 2)
r <- rotate_trends(m)
p <- plot_trends(r) #+ geom_vline(xintercept = 15, colour = "red")
print(p)
a 1 in 1000 probability if was from a normal distribution:
find_swans(r, plot = TRUE, threshold = 0.001)

fit_dfa Fit a Bayesian DFA

Description

Fit a Bayesian DFA

Usage

fit_dfa(
y = y,
num_trends = 1,
varIndx = NULL,
scale = c("zscore", "center", "none"),
iter = 2000,
chains = 4,

12 fit_dfa

thin = 1,
control = list(adapt_delta = 0.99, max_treedepth = 20),
nu_fixed = 101,
est_correlation = FALSE,
estimate_nu = FALSE,
estimate_trend_ar = FALSE,
estimate_trend_ma = FALSE,
estimate_process_sigma = FALSE,
equal_process_sigma = TRUE,
estimation = c("sampling", "optimizing", "vb", "none"),
data_shape = c("wide", "long"),
obs_covar = NULL,
pro_covar = NULL,
offset = NULL,
z_bound = NULL,
z_model = c("dfa", "proportion"),
trend_model = c("rw", "bs", "ps", "gp"),
n_knots = NULL,
knot_locs = NULL,
par_list = NULL,
family = "gaussian",
verbose = FALSE,
inv_var_weights = NULL,
likelihood_weights = NULL,
gp_theta_prior = c(3, 1),
expansion_prior = FALSE,
...

)

Arguments

y A matrix of data to fit. See data_shape option to specify whether this is long
or wide format data. Wide format data (default) is a matrix with time across
columns and unique time series across rows, and can only contain 1 observation
per time series - time combination. In contrast, long format data is a data frame
that includes observations ("obs"), time ("time") and time series ("ts") identifiers
– the benefit of long format is that multiple observations per time series can be
included. Correlation matrix currently not estimated if data shape is long.

num_trends Number of trends to fit.

varIndx Indices indicating which timeseries should have shared variances.

scale Character string, used to standardized data. Can be "zscore" to center and stan-
dardize data, "center" to just standardize data, or "none". Defaults to "zscore"

iter Number of iterations in Stan sampling, defaults to 2000. Used for both rstan::sampling()
and rstan::vb()

chains Number of chains in Stan sampling, defaults to 4.

thin Thinning rate in Stan sampling, defaults to 1.

fit_dfa 13

control A list of options to pass to Stan sampling. Defaults to list(adapt_delta =
0.99, max_treedepth = 20).

nu_fixed Student t degrees of freedom parameter. If specified as greater than 100, a nor-
mal random walk is used instead of a random walk with a t-distribution. Defaults
to 101.

est_correlation

Boolean, whether to estimate correlation of observation error matrix R. Defaults
to FALSE. Currently can’t be estimated if data are in long format.

estimate_nu Logical. Estimate the student t degrees of freedom parameter? Defaults to
FALSE,

estimate_trend_ar

Logical. Estimate AR(1) parameters on DFA trends? Defaults to ‘FALSE“, in
which case AR(1) parameters are set to 1

estimate_trend_ma

Logical. Estimate MA(1) parameters on DFA trends? Defaults to ‘FALSE“, in
which case MA(1) parameters are set to 0.

estimate_process_sigma

Logical. Defaults FALSE, whether or not to estimate process error sigma. If not
estimated, sigma is fixed at 1, like conventional DFAs.

equal_process_sigma

Logical. If process sigma is estimated, whether or not to estimate a single shared
value across trends (default) or estimate equal values for each trend

estimation Character string. Should the model be sampled using rstan::sampling()
("sampling",default), rstan::optimizing() ("optimizing"), variational infer-
ence rstan::vb() ("vb"), or no estimation done ("none"). No estimation may
be useful for debugging and simulation.

data_shape If wide (the current default) then the input data should have rows representing
the various timeseries and columns representing the values through time. This
matches the MARSS input data format. If long then the long format data is
a data frame that includes observations ("obs"), time ("time") and time series
("ts") identifiers – the benefit of long format is that multiple observations per
time series can be included

obs_covar Optional dataframe of data with 4 named columns ("time","timeseries","covariate","value"),
representing: (1) time, (2) the time series affected, (3) the covariate number for
models with more than one covariate affecting each trend, and (4) the value of
the covariate

pro_covar Optional dataframe of data with 4 named columns ("time","trend","covariate","value"),
representing: (1) time, (2) the trend affected, (3) the covariate number for mod-
els with more than one covariate affecting each trend, and (4) the value of the
covariate

offset a string argument representing the name of the offset variable to be included.
The variable name is in the data frame passed in, e.g. "offset". This only works
when the data shape is "long". All transformations (such as log transformed
effort) to the offset must be done before passing in the data.

z_bound Optional hard constraints for estimated factor loadings – really only applies to
model with 1 trend. Passed in as a 2-element vector representing the lower and
upper bound, e.g. (0, 100) to constrain positive

14 fit_dfa

z_model Optional argument allowing for elements of Z to be constrained to be propor-
tions (each time series modeled as a mixture of trends). Arguments can be "dfa"
(default) or "proportion"

trend_model Optional argument to change the model of the underlying latent trend. By de-
fault this is set to ’rw’, where the trend is modeled as a random walk - as in co-
nentional DFA. Alternative options are ’bs’, where B-splines are used to model
the trends, "ps" where P-splines are used to model the trends, or ’gp’, where
gaussian predictive processes are used. If models other than ’rw’ are used, there
are some key points. First, the MA and AR parameters on these models will be
turned off. Second, for B-splines and P-splines, the process_sigma becomes an
optional scalar on the spline coefficients, and is turned off by default. Third, the
number of knots can be specified (more knots = more wiggliness, and n_knots
< N). For models with > 2 trends, each trend has their own spline coefficients
estimated though the knot locations are assumed shared. If knots aren’t speci-
fied, the default is N/3. By default both the B-spline and P-spline models use
3rd degree functions for smoothing, and include an intercept term. The P-spline
model uses a difference penalty of 2.

n_knots The number of knots for the B-spline, P-spline, or Gaussian predictive process
models. Optional, defaults to round(N/3)

knot_locs Locations of knots (optional), defaults to uniform spacing between 1 and N

par_list A vector of parameter names of variables to be estimated by Stan. If NULL,
this will default to c("x", "Z", "sigma", "log_lik", "psi","xstar") for most mod-
els – though if AR / MA, or Student-t models are used additional parameters
will be monitored. If you want to use diagnostic tools in rstan, including mo-
ment_matching, you will need to pass in a larger list. Setting this argument
to "all" will monitor all parameters, enabling the use of diagnostic functions –
but making the models a lot larger for storage. Finally, this argument may be a
custom string of parameters to monitor, e.g. c("x","sigma")

family String describing the observation model. Default is "gaussian", but included op-
tions are "gamma", "lognormal", negative binomial ("nbinom2"), "poisson", or
"binomial". The binomial family is assumed to have logit link, gaussian family
is assumed to be identity, and the rest are log-link.

verbose Whether to print iterations and information from Stan, defaults to FALSE.
inv_var_weights

Optional name of inverse variance weights argument in data frame. This is
only implemented when data are in long format. If not entered, defaults to
inv_var_weights = 1 for all observations. The implementation of inv_var_weights
relies on inverse variance weightings, so that if you have standard errors as-
sociated with each observation, the inverse variance weights are calculated as
inv_var_weights <- 1 / (standard_errors^2) . The observation error sigma in the
likelihood then becomes sigma / sqrt(inv_var_weights)

likelihood_weights

Optional name of likelihood weights argument in data frame. These are used
in the same way weights are implemented in packages glmmTMB, brms, sdmTMB,
etc. Weights are used as multipliers on the log-likelihood, with higher weights
allowing observations to contribute more. Currently only implemented with
univariate distributions, when data is in long format

fit_dfa 15

gp_theta_prior A 2-element vector controlling the prior on the Gaussian process parameter in
cov_exp_quad. This prior is a half-Student t prior, with the first argument of
gp_theta_prior being the degrees of freedom (nu), and the second element being
the standard deviation

expansion_prior

Defaults to FALSE, if TRUE uses the parameter expansion prior of Ghosh &
Dunson 2009

... Any other arguments to pass to rstan::sampling().

Details

Note that there is nothing restricting the loadings and trends from being inverted (i.e. multiplied by
-1) for a given chain. Therefore, if you fit multiple chains, the package will attempt to determine
which chains need to be inverted using the function find_inverted_chains().

See Also

plot_loadings plot_trends rotate_trends find_swans

Examples

set.seed(42)
s <- sim_dfa(num_trends = 1, num_years = 20, num_ts = 3)
only 1 chain and 250 iterations used so example runs quickly:
m <- fit_dfa(y = s$y_sim, iter = 50, chains = 1)
Not run:
example of observation error covariates
set.seed(42)
obs_covar <- expand.grid("time" = 1:20, "timeseries" = 1:3, "covariate" = 1)
obs_covar$value <- rnorm(nrow(obs_covar), 0, 0.1)
m <- fit_dfa(y = s$y_sim, iter = 50, chains = 1, obs_covar = obs_covar)

example of process error covariates
pro_covar <- expand.grid("time" = 1:20, "trend" = 1:2, "covariate" = 1)
pro_covar$value <- rnorm(nrow(pro_covar), 0, 0.1)
m <- fit_dfa(y = s$y_sim, iter = 50, chains = 1, num_trends = 2, pro_covar = pro_covar)

example of long format data
s <- sim_dfa(num_trends = 1, num_years = 20, num_ts = 3)
obs <- c(s$y_sim[1,], s$y_sim[2,], s$y_sim[3,])
long <- data.frame("obs" = obs, "ts" = sort(rep(1:3, 20)), "time" = rep(1:20, 3))
m <- fit_dfa(y = long, data_shape = "long", iter = 50, chains = 1)

example of long format data with obs covariates
s <- sim_dfa(num_trends = 1, num_years = 20, num_ts = 3)
obs <- c(s$y_sim[1,], s$y_sim[2,], s$y_sim[3,])
long <- data.frame("obs" = obs, "ts" = sort(rep(1:3, 20)), "time" = rep(1:20, 3))
obs_covar <- expand.grid("time" = 1:20, "timeseries" = 1:3, "covariate" = 1:2)
obs_covar$value <- rnorm(nrow(obs_covar), 0, 0.1)
m <- fit_dfa(y = long, data_shape = "long", iter = 50, chains = 1, obs_covar = obs_covar)

16 fit_regimes

example of model with Z constrained to be proportions and wide format data
s <- sim_dfa(num_trends = 1, num_years = 20, num_ts = 3)
m <- fit_dfa(y = s$y_sim, z_model = "proportion", iter = 50, chains = 1)

example of model with Z constrained to be proportions and long format data
s <- sim_dfa(num_trends = 1, num_years = 20, num_ts = 3)
obs <- c(s$y_sim[1,], s$y_sim[2,], s$y_sim[3,])
long <- data.frame("obs" = obs, "ts" = sort(rep(1:3, 20)), "time" = rep(1:20, 3))
m <- fit_dfa(y = long, data_shape = "long", z_model = "proportion", iter = 50, chains = 1)

#' # example of B-spline model with wide format data
s <- sim_dfa(num_trends = 1, num_years = 20, num_ts = 3)
m <- fit_dfa(y = s$y_sim, iter = 50, chains = 1, trend_model = "bs", n_knots = 10)

#' #' # example of P-spline model with wide format data
s <- sim_dfa(num_trends = 1, num_years = 20, num_ts = 3)
m <- fit_dfa(y = s$y_sim, iter = 50, chains = 1, trend_model = "ps", n_knots = 10)

example of Gaussian process model with wide format data
s <- sim_dfa(num_trends = 1, num_years = 20, num_ts = 3)
m <- fit_dfa(y = s$y_sim, iter = 50, chains = 1, trend_model = "gp", n_knots = 5)

example of long format data
s <- sim_dfa(num_trends = 1, num_years = 20, num_ts = 3)
obs <- c(s$y_sim[1,], s$y_sim[2,], s$y_sim[3,])
long <- data.frame("obs" = obs, "ts" = sort(rep(1:3, 20)),
"time" = rep(1:20, 3), "offset" = rep(0.1,length(obs)))
m <- fit_dfa(y = long, data_shape = "long", offset = "offset", iter = 50, chains = 1)

End(Not run)

fit_regimes Fit models with differing numbers of regimes to trend data

Description

Fit models with differing numbers of regimes to trend data

Usage

fit_regimes(
y,
sds = NULL,
n_regimes = 2,
iter = 2000,
thin = 1,
chains = 1,
...

)

hmm_init 17

Arguments

y Data, time series or trend from fitted DFA model.

sds Optional time series of standard deviations of estimates. If passed in, residual
variance not estimated. Defaults to NULL.

n_regimes Number of regimes to evaluate, defaults 2

iter MCMC iterations, defaults to 2000.

thin MCMC thinning rate, defaults to 1.

chains MCMC chains, defaults to 1 (note that running multiple chains may result in
a label switching problem where the regimes are identified with different IDs
across chains).

... Other parameters to pass to rstan::sampling().

Examples

data(Nile)
fit_regimes(log(Nile), iter = 50, n_regimes = 1)

hmm_init Create initial values for the HMM model.

Description

Create initial values for the HMM model.

Usage

hmm_init(K, x_t)

Arguments

K The number of regimes or clusters to fit. Called by rstan::sampling().

x_t A matrix of values. Called by rstan::sampling().

Value

list of initial values (mu, sigma)

18 is_converged

invert_chains Invert chains

Description

Invert chains

Usage

invert_chains(model, trends = 1, print = FALSE, ...)

Arguments

model A Stan model, rstanfit object

trends The number of trends in the DFA, defaults to 1

print Logical indicating whether the summary should be printed. Defaults to FALSE.

... Other arguments to pass to find_inverted_chains().

See Also

find_inverted_chains

is_converged Summarize Rhat convergence statistics across parameters

Description

Pass in rstanfit model object, and a threshold Rhat value for convergence. Returns boolean.

Usage

is_converged(fitted_model, threshold = 1.05, parameters = c("sigma", "x", "Z"))

Arguments

fitted_model Samples extracted (with permuted = FALSE) from a Stan model. E.g. output
from invert_chains().

threshold Threshold for maximum Rhat.

parameters Vector of parameters to be included in convergence determination. Defaults =
c("sigma","x","Z"). Other elements can be added including "pred", "log_lik", or
"lp__"

loo.bayesdfa 19

loo.bayesdfa LOO information criteria

Description

Extract the LOOIC (leave-one-out information criterion) using loo::loo(). Note that we’ve im-
plemented slightly different variants of loo, based on whether the DFA observation model includes
correlation between time series or not (default is no correlation). Importantly, these different ver-
sions are not directly comparable to evaluate data support for including correlation or not in a DFA.
If time series are not correlated, the point-wise log-likelihood for each observation is calculated and
used in the loo calculations. However if time series are correlated, then each time slice is assumed
to be a joint observation of all variables, and the point-wise log-likelihood is calculated as the joint
likelihood of all variables under the multivariate normal distribution.

Usage

S3 method for class 'bayesdfa'
loo(x, ...)

Arguments

x Output from fit_dfa().
... Arguments for loo::relative_eff() and loo::loo.array().

Examples

set.seed(1)
s <- sim_dfa(num_trends = 1, num_years = 20, num_ts = 3)
m <- fit_dfa(y = s$y_sim, iter = 50, chains = 1, num_trends = 1)
loo(m)

plot_fitted Plot the fitted values from a DFA

Description

Plot the fitted values from a DFA

Usage

plot_fitted(
modelfit,
conf_level = 0.95,
names = NULL,
spaghetti = FALSE,
time_labels = NULL

)

20 plot_loadings

Arguments

modelfit Output from fit_dfa, a rstanfit object

conf_level Probability level for CI.

names Optional vector of names for plotting labels TODO. Should be same length as
the number of time series

spaghetti Defaults to FALSE, but if TRUE puts all raw time series (grey) and fitted values
on a single plot

time_labels Optional vector of time labels for plotting, same length as number of time steps

See Also

plot_loadings fit_dfa rotate_trends dfa_fitted

Examples

y <- sim_dfa(num_trends = 2, num_years = 20, num_ts = 4)
m <- fit_dfa(y = y$y_sim, num_trends = 2, iter = 50, chains = 1)
p <- plot_fitted(m)
print(p)

p <- plot_fitted(m, spaghetti = TRUE)
print(p)

plot_loadings Plot the loadings from a DFA

Description

Plot the loadings from a DFA

Usage

plot_loadings(
rotated_modelfit,
names = NULL,
facet = TRUE,
violin = TRUE,
conf_level = 0.95,
threshold = NULL

)

plot_regime_model 21

Arguments

rotated_modelfit

Output from rotate_trends().

names An optional vector of names for plotting the loadings.

facet Logical. Should there be a separate facet for each trend? Defaults to TRUE.

violin Logical. Should the full posterior densities be shown as a violin plot? Defaults
to TRUE.

conf_level Confidence level for credible intervals. Defaults to 0.95.

threshold Numeric (0-1). Optional for plots, if included, only plot loadings who have
Pr(<0) or Pr(>0) > threshold. For example threshold = 0.8 would only display
estimates where 80% of posterior density was above/below zero. Defaults to
NULL (not used).

See Also

plot_trends fit_dfa rotate_trends

Examples

set.seed(42)
s <- sim_dfa(num_trends = 2, num_ts = 4, num_years = 10)
only 1 chain and 180 iterations used so example runs quickly:
m <- fit_dfa(y = s$y_sim, num_trends = 2, iter = 50, chains = 1)
r <- rotate_trends(m)
plot_loadings(r, violin = FALSE, facet = TRUE)
plot_loadings(r, violin = FALSE, facet = FALSE)
plot_loadings(r, violin = TRUE, facet = FALSE)
plot_loadings(r, violin = TRUE, facet = TRUE)

plot_regime_model Plot the state probabilities from find_regimes()

Description

Plot the state probabilities from find_regimes()

Usage

plot_regime_model(
model,
probs = c(0.05, 0.95),
type = c("probability", "means"),
regime_prob_threshold = 0.9,
plot_prob_indices = NULL,
flip_regimes = FALSE

)

22 plot_trends

Arguments

model A model returned by find_regimes().

probs A numeric vector of quantiles to plot the credible intervals at. Defaults to
c(0.05, 0.95).

type Whether to plot the probabilities (default) or means.

regime_prob_threshold

The probability density that must be above 0.5. Defaults to 0.9 before we clas-
sify a regime (only affects "means" plot).

plot_prob_indices

Optional indices of probability plots to plot. Defaults to showing all.

flip_regimes Optional whether to flip regimes in plots, defaults to FALSE

Details

Note that the original timeseries data (dots) are shown scaled between 0 and 1.

Examples

data(Nile)
m <- fit_regimes(log(Nile), n_regimes = 2, chains = 1, iter = 50)
plot_regime_model(m)
plot_regime_model(m, plot_prob_indices = c(2))
plot_regime_model(m, type = "means")

plot_trends Plot the trends from a DFA

Description

Plot the trends from a DFA

Usage

plot_trends(
rotated_modelfit,
years = NULL,
highlight_outliers = FALSE,
threshold = 0.01

)

predicted 23

Arguments

rotated_modelfit

Output from rotate_trends

years Optional numeric vector of years for the plot
highlight_outliers

Logical. Should trend events that exceed the probability of occurring with a
normal distribution as defined by threshold be highlighted? Defaults to FALSE

threshold A probability threshold below which to flag trend events as extreme. Defaults to
0.01

See Also

dfa_trends plot_loadings fit_dfa rotate_trends

Examples

set.seed(1)
s <- sim_dfa(num_trends = 1)
m <- fit_dfa(y = s$y_sim, num_trends = 1, iter = 50, chains = 1)
r <- rotate_trends(m)
p <- plot_trends(r)
print(p)

predicted Calculate predicted value from DFA object

Description

Pass in rstanfit model object. Returns array of predictions, dimensioned number of MCMC
draws x number of MCMC chains x time series length x number of time series

Usage

predicted(fitted_model)

Arguments

fitted_model Samples extracted (with permuted = FALSE) from a Stan model. E.g. output
from invert_chains().

Examples

Not run:
set.seed(42)
s <- sim_dfa(num_trends = 1, num_years = 20, num_ts = 3)
only 1 chain and 1000 iterations used so example runs quickly:
m <- fit_dfa(y = s$y_sim, iter = 2000, chains = 3, num_trends = 1)

24 sim_dfa

pred <- predicted(m)

End(Not run)

rotate_trends Rotate the trends from a DFA

Description

Rotate the trends from a DFA

Usage

rotate_trends(fitted_model, conf_level = 0.95, invert = FALSE)

Arguments

fitted_model Output from fit_dfa().

conf_level Probability level for CI.

invert Whether to invert the trends and loadings for plotting purposes

Examples

set.seed(42)
s <- sim_dfa(num_trends = 1, num_years = 20, num_ts = 3)
only 1 chain and 800 iterations used so example runs quickly:
m <- fit_dfa(y = s$y_sim, iter = 50, chains = 1)
r <- rotate_trends(m)
plot_trends(r)

sim_dfa Simulate from a DFA

Description

Simulate from a DFA

sim_dfa 25

Usage

sim_dfa(
num_trends = 1,
num_years = 20,
num_ts = 4,
loadings_matrix = matrix(nrow = num_ts, ncol = num_trends, rnorm(num_ts * num_trends,

0, 1)),
sigma = rlnorm(1, meanlog = log(0.2), 0.1),
varIndx = rep(1, num_ts),
trend_model = c("rw", "bs"),
spline_weights = matrix(ncol = 6, nrow = num_trends, data = rnorm(6 * num_trends)),
extreme_value = NULL,
extreme_loc = NULL,
nu_fixed = 100,
user_supplied_deviations = NULL

)

Arguments

num_trends The number of trends.

num_years The number of years.

num_ts The number of timeseries.
loadings_matrix

A loadings matrix. The number of rows should match the number of timeseries
and the number of columns should match the number of trends. Note that this
loadings matrix will be internally manipulated by setting some elements to 0 and
constraining some elements to 1 so that the model can be fitted. See fit_dfa().
See the outfit element Z in the returned list is to see the manipulated loadings
matrix. If not specified, a random matrix ~ N(0, 1) is used.

sigma A vector of standard deviations on the observation error. Should be of the same
length as the number of trends. If not specified, random numbers are used
rlnorm(1, meanlog = log(0.2), 0.1).

varIndx Indices of unique observation variances. Defaults to c(1, 1, 1, 1). Unique
observation error variances would be specified as c(1, 2, 3, 4) in the case of 4
time series.

trend_model The type of trend model. Random walk ("rw") or basis spline ("bs")

spline_weights A matrix of basis function weights that is used if trend_model = "bs". The
number of columns should correspond to the number of knots and the number
of rows should correspond to the number of trends.

extreme_value Value added to the random walk in the extreme time step. Defaults to not in-
cluded.

extreme_loc Location of single extreme event in the process. The same for all processes, and
defaults to round(n_t/2) where n_t is the time series length

nu_fixed Nu is the degrees of freedom parameter for the t-distribution, defaults to 100,
which is effectively normal.

26 trend_cor

user_supplied_deviations

An optional matrix of deviations for the trend random walks. Columns are for
trends and rows are for each time step.

Value

A list with the following elements: y_sim is the simulated data, pred is the true underlying data
without observation error added, x is the underlying trends, Z is the manipulated loadings matrix
that is fed to the model.

Examples

x <- sim_dfa(num_trends = 2)
names(x)
matplot(t(x$y_sim), type = "l")
matplot(t(x$x), type = "l")

set.seed(42)
x <- sim_dfa(extreme_value = -4, extreme_loc = 10)
matplot(t(x$x), type = "l")
abline(v = 10)
matplot(t(x$pred), type = "l")
abline(v = 10)

set.seed(42)
x <- sim_dfa()
matplot(t(x$x), type = "l")
abline(v = 10)
matplot(t(x$pred), type = "l")
abline(v = 10)

trend_cor Estimate the correlation between a DFA trend and some other time-
series

Description

Fully incorporates the uncertainty from the posterior of the DFA trend

Usage

trend_cor(
rotated_modelfit,
y,
trend = 1,
time_window = seq_len(length(y)),
trend_samples = 100,
stan_iter = 300,
stan_chains = 1,
...

)

trend_cor 27

Arguments

rotated_modelfit

Output from rotate_trends().

y A numeric vector to correlate with the DFA trend. Must be the same length as
the DFA trend.

trend A number corresponding to which trend to use, defaults to 1.

time_window Indices indicating a time window slice to use in the correlation. Defaults to
using the entire time window. Can be used to walk through the timeseries and
test the cross correlations.

trend_samples The number of samples from the trend posterior to use. A model will be run for
each trend sample so this value shouldn’t be too large. Defaults to 100.

stan_iter The number of samples from the posterior with each Stan model run, defaults to
300.

stan_chains The number of chains for each Stan model run, defaults to 1.

... Other arguments to pass to sampling

Details

Uses a sigma ~ half_t(3, 0, 2) prior on the residual standard deviation and a uniform(-1, 1)
prior on the correlation coefficient. Fitted as a linear regression of y ~ x, where y represents the
y argument to trend_cor() and x represents the DFA trend, and both y and x have been scaled
by subtracting their means and dividing by their standard deviations. Samples are drawn from the
posterior of the trend and repeatedly fed through the Stan regression to come up with a combined
posterior of the correlation.

Value

A numeric vector of samples from the correlation coefficient posterior.

Examples

set.seed(1)
s <- sim_dfa(num_trends = 1, num_years = 15)
m <- fit_dfa(y = s$y_sim, num_trends = 1, iter = 50, chains = 1)
r <- rotate_trends(m)
n_years <- ncol(r$trends[, 1,])
fake_dat <- rnorm(n_years, 0, 1)
correlation <- trend_cor(r, fake_dat, trend_samples = 25)
hist(correlation)
correlation <- trend_cor(r,

y = fake_dat, time_window = 5:15,
trend_samples = 25

)
hist(correlation)

Index

bayesdfa (bayesdfa-package), 2
bayesdfa-package, 2

dfa_cv, 3
dfa_fitted, 5
dfa_loadings, 6
dfa_trends, 7

find_dfa_trends, 7
find_inverted_chains, 9
find_inverted_chains(), 15, 18
find_regimes, 9
find_regimes(), 21, 22
find_swans, 10
fit_dfa, 5, 11, 20
fit_dfa(), 19, 24, 25
fit_regimes, 16

hmm_init, 17

invert_chains, 18
invert_chains(), 18, 23
is_converged, 18

loo, 7
loo (loo.bayesdfa), 19
loo.bayesdfa, 19
loo::loo(), 19
loo::loo.array(), 19
loo::relative_eff(), 19

plot_fitted, 19
plot_loadings, 20
plot_regime_model, 21
plot_trends, 22
predicted, 23

rotate_trends, 6, 7, 23, 24
rotate_trends(), 11, 21, 27
rstan::optimizing(), 4, 13
rstan::sampling(), 4, 10, 12, 13, 15, 17

rstan::vb(), 4, 12, 13

sampling, 27
sim_dfa, 24

trend_cor, 26
trend_cor(), 27

28

	bayesdfa-package
	dfa_cv
	dfa_fitted
	dfa_loadings
	dfa_trends
	find_dfa_trends
	find_inverted_chains
	find_regimes
	find_swans
	fit_dfa
	fit_regimes
	hmm_init
	invert_chains
	is_converged
	loo.bayesdfa
	plot_fitted
	plot_loadings
	plot_regime_model
	plot_trends
	predicted
	rotate_trends
	sim_dfa
	trend_cor
	Index

